Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 56(3): 413-421, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28888086

RESUMO

BACKGROUND: Blood specimens are transported from clinical departments to the biochemistry laboratory by hospital courier service, sometimes over long distances. The aim of this study was to assess the stability of common biochemical analytes in venous blood under our routine transport conditions and to evaluate analyte stability after prompt or delayed centrifugation. METHODS: We investigated pre- and postanalytical contributions of 32 biochemical analytes in plasma and serum samples from 10 patients (healthy adults and patients from intensive care units). Differences in analyte concentrations between baseline (T0) and different time intervals (2, 4, 6, 8, 12 and 24 h) following storage after prompt and delayed centrifugation were reported. Evaluation was against the total change limit as described by Oddoze et al. (Oddoze C, Lombard E, Portugal H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin Biochem 2012;45:464-9). RESULTS: The majority of analytes were stable with delayed separation up to 12 h, except for potassium, C-peptide, osteocalcin, parathyroid hormone (PTH), bicarbonate and LDH. After prompt centrifugation and storage at 4°C, stability was greatly increased up to 48 h for most analytes. LDH and bicarbonate had the lowest stability after centrifugation; therefore, no reanalysis of these analytes in a centrifuged tube can be allowed. CONCLUSIONS: Knowledge of analyte stability is crucial to interpret biological analysis with confidence. However, centrifugation prior to transport is time consuming, and the transfer of plasma or serum from a primary tube to a secondary tube increases the risk of preanalytical errors. For analytes that are stable in whole blood for 24 h or more, it seems that there is no benefit to centrifuge before transport.


Assuntos
Análise Química do Sangue , Preservação de Sangue , Heparina/sangue , Lítio/sangue , Potássio/sangue , Coleta de Amostras Sanguíneas , Humanos
2.
Inorg Chem ; 52(13): 7497-507, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23767403

RESUMO

The complex formation of protactinium(V) with DTPA was studied at different temperatures (25-50 °C) and ionic strengths (0.1-1 M) with the element at tracer scale. Irrespective of the temperature and ionic strength studied, only one neutral complex with (1:1) stoichiometry was identified from solvent extraction and capillary electrophoresis coupled to ICP-MS (CE-ICP-MS) experiments. Density Functional Theory (DFT) calculations revealed that two complexes can be considered: Pa(DTPA) and PaO(H2DTPA). The associated formation constants were determined from solvent extraction data at different ionic strengths and temperatures and then extrapolated to zero ionic strength by SIT methodology. These constants are valid, regardless of complex form, Pa(DTPA) or PaO(H2DTPA). The standard thermodynamic data determined with these extrapolated constants revealed a very stable complex formed energetically by an endothermic contribution which is counter balanced by a strong entropic contribution. Both, the positive enthalpy and entropy energy terms suggest the formation of an inner sphere complex.

3.
Inorg Chem ; 49(21): 9962-71, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20883035

RESUMO

The complexation of protactinium(V) by oxalate was studied by X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) and solvent extraction. XAS measurements showed unambiguously the presence of a short single oxo-bond, and the deduced structure agrees with theoretical calculations. CE-ICP-MS results indicated the formation of a highly charged anionic complex. The formation constants of PaO(C(2)O(4))(+), PaO(C(2)O(4))(2)(-), and PaO(C(2)O(4))(3)(3-) were determined from solvent extraction data by using protactinium at tracer scale (C(Pa) < 10(-10) M). Complexation reactions of Pa(V) with oxalate were found to be exothermic with relatively high positive entropic variation.


Assuntos
Oxalatos/química , Protoactínio/química , Termodinâmica , Eletroforese Capilar , Espectrometria de Massas , Estrutura Molecular , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA