Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585087

RESUMO

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Assuntos
Carcinogênese/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animais , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
2.
Cell ; 175(1): 159-170.e16, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241606

RESUMO

Most high-grade serous ovarian cancer (HGSOC) patients develop resistance to platinum-based chemotherapy and recur, but 15% remain disease free over a decade. To discover drivers of long-term survival, we quantitatively analyzed the proteomes of platinum-resistant and -sensitive HGSOC patients from minute amounts of formalin-fixed, paraffin-embedded tumors. This revealed cancer/testis antigen 45 (CT45) as an independent prognostic factor associated with a doubling of disease-free survival in advanced-stage HGSOC. Phospho- and interaction proteomics tied CT45 to DNA damage pathways through direct interaction with the PP4 phosphatase complex. In vitro, CT45 regulated PP4 activity, and its high expression led to increased DNA damage and platinum sensitivity. CT45-derived HLA class I peptides, identified by immunopeptidomics, activate patient-derived cytotoxic T cells and promote tumor cell killing. This study highlights the power of clinical cancer proteomics to identify targets for chemo- and immunotherapy and illuminate their biological roles.


Assuntos
Antígenos de Neoplasias/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteômica/métodos , Idoso , Sequência de Aminoácidos/genética , Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunoterapia/métodos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Prognóstico
3.
Mol Cell ; 84(11): 2185-2202.e12, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788717

RESUMO

Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector's toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr's pivotal role in immunity.


Assuntos
Bacteriófagos , Microscopia Crioeletrônica , NAD , NAD/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/imunologia , Hidrólise , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/imunologia , Sistemas Toxina-Antitoxina/genética , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo
4.
Mol Cell ; 76(6): 953-964.e6, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31585692

RESUMO

Dynamic protein phosphorylation constitutes a fundamental regulatory mechanism in all organisms. Phosphoprotein phosphatase 4 (PP4) is a conserved and essential nuclear serine and threonine phosphatase. Despite the importance of PP4, general principles of substrate selection are unknown, hampering the study of signal regulation by this phosphatase. Here, we identify and thoroughly characterize a general PP4 consensus-binding motif, the FxxP motif. X-ray crystallography studies reveal that FxxP motifs bind to a conserved pocket in the PP4 regulatory subunit PPP4R3. Systems-wide in silico searches integrated with proteomic analysis of PP4 interacting proteins allow us to identify numerous FxxP motifs in proteins controlling a range of fundamental cellular processes. We identify an FxxP motif in the cohesin release factor WAPL and show that this regulates WAPL phosphorylation status and is required for efficient cohesin release. Collectively our work uncovers basic principles of PP4 specificity with broad implications for understanding phosphorylation-mediated signaling in cells.


Assuntos
Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X/métodos , Células HEK293 , Células HeLa , Humanos , Fosforilação , Ligação Proteica/genética , Especificidade por Substrato
5.
EMBO J ; 41(14): e110611, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35695070

RESUMO

Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT-061 have recently been reported to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT-061 on PP2A-B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome-wide CRISPR-Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT-061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT-061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A-B56 biology.


Assuntos
Apoptose , Proteína Fosfatase 2 , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Processamento de Proteína Pós-Traducional
6.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
7.
Mol Cell ; 69(1): 136-145.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290611

RESUMO

Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.


Assuntos
Ebolavirus/metabolismo , Proteína Fosfatase 2/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteínas Virais/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Células HeLa , Humanos , Nucleoproteínas , Fosforilação , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Fosfatase 2/antagonistas & inibidores , RNA Viral/metabolismo , Células Vero
8.
EMBO J ; 39(13): e103695, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400009

RESUMO

PP2A is an essential protein phosphatase that regulates most cellular processes through the formation of holoenzymes containing distinct regulatory B-subunits. Only a limited number of PP2A-regulated phosphorylation sites are known. This hampers our understanding of the mechanisms of site-specific dephosphorylation and of its tumor suppressor functions. Here, we develop phosphoproteomic strategies for global substrate identification of PP2A-B56 and PP2A-B55 holoenzymes. Strikingly, we find that B-subunits directly affect the dephosphorylation site preference of the PP2A catalytic subunit, resulting in unique patterns of kinase opposition. For PP2A-B56, these patterns are further modulated by affinity and position of B56 binding motifs. Our screens identify phosphorylation sites in the cancer target ADAM17 that are regulated through a conserved B56 binding site. Binding of PP2A-B56 to ADAM17 protease decreases growth factor signaling and tumor development in mice. This work provides a roadmap for the identification of phosphatase substrates and reveals unexpected mechanisms governing PP2A dephosphorylation site specificity and tumor suppressor function.


Assuntos
Proteína ADAM17/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína ADAM17/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células HeLa , Humanos , Camundongos , Fosforilação
9.
Mol Syst Biol ; 19(12): e11782, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37916966

RESUMO

Phosphoprotein phosphatases (PPPs) regulate major signaling pathways, but the determinants of phosphatase specificity are poorly understood. This is because methods to investigate this at scale are lacking. Here, we develop a novel in vitro assay, MRBLE:Dephos, that allows multiplexing of dephosphorylation reactions to determine phosphatase preferences. Using MRBLE:Dephos, we establish amino acid preferences of the residues surrounding the dephosphorylation site for PP1 and PP2A-B55, which reveals common and unique preferences. To compare the MRBLE:Dephos results to cellular substrates, we focused on mitotic exit that requires extensive dephosphorylation by PP1 and PP2A-B55. We use specific inhibition of PP1 and PP2A-B55 in mitotic exit lysates coupled with phosphoproteomics to identify more than 2,000 regulated sites. Importantly, the sites dephosphorylated during mitotic exit reveal key signatures that are consistent with MRBLE:Dephos. Furthermore, integration of our phosphoproteomic data with mitotic interactomes of PP1 and PP2A-B55 provides insight into how binding of phosphatases to substrates shapes dephosphorylation. Collectively, we develop novel approaches to investigate protein phosphatases that provide insight into mitotic exit regulation.


Assuntos
Mitose , Proteína Fosfatase 2 , Fosforilação , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Especificidade por Substrato
10.
BMC Infect Dis ; 24(1): 105, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238686

RESUMO

BACKGROUND: As many as 2.4 million Americans are affected by chronic Hepatitis C Virus (HCV) in the United States.In 2018, the estimated number of adults with a history of HCV infection in San Diego County was 55,354 (95% CI: 25,411-93,329). This corresponded to a seroprevalence of 2.1% (95% CI: 2.1-3.4%). One-third of infections were among PWID. Published research has demonstrated that direct-acting antivirals (DAAs) have high efficacy and can now be used by primary care providers to treat HCV. In addition, limited evidence exists to support the effectiveness of simplified algorithms in clinical trial and real-world settings. Even with expanded access to HCV treatment in primary care settings, there are still groups, especially people who inject drugs (PWID) and people experiencing homelessness, who experience treatment disparities due to access and treatment barriers. The current study extends the simplified algorithm with a streetside 'one-stop-shop' approach with integrated care (including the offer of buprenorphine prescriptions and abscess care) using a mobile clinic situated adjacent to a syringe service program serving many homeless populations. Rates of HCV treatment initiation and retention will be compared between patients offered HCV care in a mobile clinic adjacent to a syringe services program (SSP) and homeless encampment versus those who are linked to a community clinic's current practice of usual care, which includes comprehensive patient navigation. METHODS: A quasi-experimental, prospective, interventional, comparative effectiveness trial with allocation of approximately 200 patients who inject drugs and have chronic HCV to the "simplified care" pathway (intervention group) or the "usual care" pathway (control group). Block randomization will be performed with a 1:1 randomization. DISCUSSION: Previous research has demonstrated acceptable outcomes for patients treated using simplified algorithms for DAAs and point-of-care testing in mobile medical clinics; however, there are opportunities to explore how these new, innovative systems of care impact treatment initiation rates or other HCV care cascade outcomes among PWID. TRIAL REGISTRATION: We have registered our study with ClinicalTrials.gov, a resource of the United States National Library of Medicine. This database contains research studies from United States and other countries around the world. Our study has not been previously published. The ClinicalTrials.gov registration identifier is NCT04741750.


Assuntos
Usuários de Drogas , Hepatite C Crônica , Hepatite C , Abuso de Substâncias por Via Intravenosa , Adulto , Humanos , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/epidemiologia , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Antivirais/uso terapêutico , Estudos Prospectivos , Melhoria de Qualidade , Estudos Soroepidemiológicos , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Algoritmos , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Mol Cell ; 63(4): 686-695, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27453045

RESUMO

Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.


Assuntos
Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional , Sequência Conservada , Bases de Dados de Proteínas , Proteína Forkhead Box O3/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Transfecção
12.
Nucleic Acids Res ; 50(19): 11199-11213, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36271789

RESUMO

Standalone ring nucleases are CRISPR ancillary proteins, which downregulate the immune response of Type III CRISPR-Cas systems by cleaving cyclic oligoadenylates (cA) second messengers. Two genes with this function have been found within the Sulfolobus islandicus (Sis) genome. They code for a long polypeptide composed by a CARF domain fused to an HTH domain and a short polypeptide constituted by a CARF domain with a 40 residue C-terminal insertion. Here, we determine the structure of the apo and substrate bound states of the Sis0455 enzyme, revealing an insertion at the C-terminal region of the CARF domain, which plays a key role closing the catalytic site upon substrate binding. Our analysis reveals the key residues of Sis0455 during cleavage and the coupling of the active site closing with their positioning to proceed with cA4 phosphodiester hydrolysis. A time course comparison of cA4 cleavage between the short, Sis0455, and long ring nucleases, Sis0811, shows the slower cleavage kinetics of the former, suggesting that the combination of these two types of enzymes with the same function in a genome could be an evolutionary strategy to regulate the levels of the second messenger in different infection scenarios.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Oligorribonucleotídeos/química , Nucleotídeos de Adenina/metabolismo , Endonucleases/metabolismo
13.
Genes Dev ; 30(2): 149-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26744420

RESUMO

Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities.


Assuntos
Proteínas de Transporte/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Proteínas Nucleares/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/imunologia , Estrutura Molecular , Estrutura Terciária de Proteína , Transporte Proteico
14.
Nucleic Acids Res ; 49(21): 12577-12590, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850143

RESUMO

Type III CRISPR-Cas effector systems detect foreign RNA triggering DNA and RNA cleavage and synthesizing cyclic oligoadenylate molecules (cA) in their Cas10 subunit. cAs act as a second messenger activating auxiliary nucleases, leading to an indiscriminate RNA degradation that can end in cell dormancy or death. Standalone ring nucleases are CRISPR ancillary proteins which downregulate the strong immune response of Type III systems by degrading cA. These enzymes contain a CRISPR-associated Rossman-fold (CARF) domain, which binds and cleaves the cA molecule. Here, we present the structures of the standalone ring nuclease from Sulfolobus islandicus (Sis) 0811 in its apo and post-catalytic states. This enzyme is composed by a N-terminal CARF and a C-terminal wHTH domain. Sis0811 presents a phosphodiester hydrolysis metal-independent mechanism, which cleaves cA4 rings to generate linear adenylate species, thus reducing the levels of the second messenger and switching off the cell antiviral state. The structural and biochemical analysis revealed the coupling of a cork-screw conformational change with the positioning of key catalytic residues to proceed with cA4 phosphodiester hydrolysis in a non-concerted manner.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Oligorribonucleotídeos/metabolismo , Sulfolobus solfataricus/enzimologia , Nucleotídeos de Adenina/química , Sítios de Ligação/genética , Biocatálise , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Cromatografia Líquida , Cristalografia por Raios X , Endonucleases/química , Endonucleases/genética , Cinética , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Nucleotídeos Cíclicos/química , Oligorribonucleotídeos/química , Domínios Proteicos , Sulfolobus solfataricus/genética
15.
J Biol Chem ; 295(2): 403-414, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31792057

RESUMO

The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.


Assuntos
Lactococcus lactis/genética , Vacinas Antimaláricas/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Animais , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/farmacologia , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum/genética , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Solubilidade
16.
Eur Biophys J ; 50(3-4): 653-660, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864492

RESUMO

NanoTemper Monolith instruments have gained enormous popularity for measuring molecular interactions both in academia and industry. The underlying technology has been extensively reviewed along with its assumptions, limitations, and applications (Scheuermann et al., Anal Biochem 496:79-93, 2016). Several assumptions about the technique such as the extent of thermal deviations generated by the infrared laser and the thermophoretic foundation of the measured signal have been revised during the last decade. We present here in this letter the experience gathered in scientific service facilities about this technique and make scientists aware of possible pitfalls with the intention to promote knowledge and good practice throughout the scientific community.


Assuntos
Fenômenos Biofísicos
17.
Eur Biophys J ; 50(3-4): 453-460, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881595

RESUMO

As the scientific community strives to make published results more transparent and reliable, it has become obvious that poor data reproducibility can often be attributed to insufficient quality control of experimental reagents. In this context, proteins and peptides reagents require much stricter quality controls than those routinely performed on them in a significant proportion of research laboratories. Members of the ARBRE-MOBIEU and the P4EU networks have combined their expertise to generate guidelines for the evaluation of purified proteins used in life sciences and medical trials. These networks, representing more than 150 laboratories specialized in protein production and/or protein molecular biophysics, have implemented such guidelines in their respective laboratories. Over a one-year period, the network members evaluated the contribution these guidelines made toward obtaining more productive, robust and reproducible research by correlating the applied quality controls to given samples with the reliability and reproducibility of the scientific data obtained using these samples in follow-up experiments. The results indicate that QC guideline implementation facilitates the optimization of the protein purification process and improves the reliability of downstream experiments. It seems, therefore, that investing in protein QC might be advantageous to all the stakeholders in life sciences (researchers, editors, and funding agencies alike), because this practice improves data veracity and minimizes loss of valuable time and resources. In the light of these conclusions, the network members suggest that the implementation of these simple QC guidelines should become minimal reporting practice in the publication of data derived from the use of protein and peptide reagents.


Assuntos
Confiabilidade dos Dados , Controle de Qualidade , Reprodutibilidade dos Testes
18.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881594

RESUMO

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Assuntos
Benchmarking , Laboratórios , Calorimetria , Reprodutibilidade dos Testes , Temperatura
19.
Environ Monit Assess ; 193(4): 236, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33782791

RESUMO

Rio Sonora watershed and its aquifer-located in northwest Mexico-have been influenced by mining operations for 140 years, possibly causing emissions of potentially toxic elements (PTE) and affecting health of exposed populations. On the basis of available data from governmental surveys (2014-2017) and recent sampling (2018), this study constructed reliable PTE total concentration database that allowed us to report temporal/spatial variations in surface and groundwater and their associated health risks to the population living in the central part of the Rio Sonora basin. The data clearly showed that a mining spill that took place in 2014 has had an adverse impact on total PTE concentrations in surface water. They also indicated the presence of different PTE point source locations that have continued to cause contamination of surface water at levels of health concern. Data also suggested slight impacts of the spill event on groundwater possibly related to soil neutralizing potential. Two metal groups were detected for surface waters (Pb-Cd-As-Ni-Cr and of Zn-Al-Cr) and groundwaters (Cr-As-Cu-Cd and Zn-Al), which suggest that they have different sources or are being released by different processes. The potential health impacts of PTE concentrations were associated with specific age groups, dates, and areas. The results indicate that in this complex semi-arid rural system, current and historical mining activities, as well as contrasting hydrological conditions, have impacted surface and groundwater quality with important ecological and human health risks.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Metais Pesados/análise , México , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Recursos Hídricos
20.
Nucleic Acids Res ; 45(18): 10740-10750, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977519

RESUMO

CRISPR-Cas systems protect prokaryotes against invading viruses and plasmids. The system is associated with a large number of Cas accessory proteins among which many contain a CARF (CRISPR-associated Rossmann fold) domain implicated in ligand binding and a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) nuclease domain. Here, such a dual domain protein, i.e. the Sulfolobus islandicus Csx1 (SisCsx1) was characterized. The enzyme exhibited metal-independent single-strand specific ribonuclease activity. In fact, SisCsx1 showed a basal RNase activity in the absence of ligand; upon the binding of an RNA ligand carrying four continuous adenosines at the 3'-end (3'-tetra-rA), the activated SisCsx1 degraded RNA substrate with a much higher turnover rate. Amino acid substitution mutants of SisCsx1 were obtained, and characterization of these mutant proteins showed that the CARF domain of the enzyme is responsible for binding to 3'-tetra-rA and the ligand binding strongly activates RNA cleavage by the HEPN domain. Since RNA polyadenylation is an important step in RNA decay in prokaryotes, and poly(A) RNAs can activate CARF domain proteins, the poly(A) RNA may function as an important signal in the cellular responses to viral infection and environmental stimuli, leading to degradation of both viral and host transcripts and eventually to cell dormancy or cell death.


Assuntos
Proteínas Arqueais/metabolismo , Endorribonucleases/metabolismo , RNA Mensageiro/química , Sulfolobus/enzimologia , Regulação Alostérica , Proteínas Arqueais/química , Endorribonucleases/química , Ligantes , Metais/metabolismo , Poli A/química , Ligação Proteica , Domínios Proteicos , Clivagem do RNA , Sulfolobus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA