Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
FASEB J ; 37(7): e23007, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261735

RESUMO

Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.


Assuntos
Mecanotransdução Celular , Miostatina , Animais , Camundongos , Fenômenos Biomecânicos , Colágeno/metabolismo , Miostatina/metabolismo , Proteômica , Tendões/metabolismo
2.
J Anat ; 238(6): 1284-1295, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33438210

RESUMO

Networks linking single genes to multiple phenotypic outcomes can be founded on local anatomical interactions as well as on systemic factors like biochemical products. Here we explore the effects of such interactions by investigating the competing spatial demands of brain and masticatory muscle growth within the hypermuscular myostatin-deficient mouse model and in computational simulations. Mice that lacked both copies of the myostatin gene (-/-) and display gross hypermuscularity, and control mice that had both copies of the myostatin gene (+/+) were sampled at 1, 7, 14 and 28 postnatal days. A total of 48 mice were imaged with standard as well as contrast-enhanced microCT. Size metrics and landmark configurations were collected from the image data and were analysed alongside in silico models of tissue expansion. Findings revealed that: masseter muscle volume was smaller in -/- mice at day 1 but became, and remained thereafter, larger by 7 days; -/- endocranial volumes begin and remained smaller; -/- enlargement of the masticatory muscles was associated with caudolateral displacement of the calvarium, lateral displacement of the zygomatic arches, and slight dorsal deflection of the face and basicranium. Simulations revealed basicranial retroflexion (flattening) and dorsal deflection of the face associated with muscle expansion and abrogative covariations of basicranial flexion and ventral facial deflection associated with endocranial expansion. Our findings support the spatial-packing theory and highlight the importance of understanding the harmony of competing spatial demands that can shape and maintain mammalian skull architecture during ontogeny.


Assuntos
Face/anatomia & histologia , Músculos da Mastigação/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cefalometria , Simulação por Computador , Camundongos , Miostatina/genética
3.
Connect Tissue Res ; 62(1): 24-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32664808

RESUMO

PURPOSE/AIM: Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease characterized by extensive muscle weakness. Patients with DMD lack a functional dystrophin protein, which transmits force and organizes the cytoskeleton of skeletal muscle. Multiomic studies have been proposed as a way to obtain novel insight about disease processes from preclinical models, and we used this approach to study pathological changes in dystrophic muscles. MATERIALS AND METHODS: We evaluated hindlimb muscles of male mdx/mTR mice, which lack a functional dystrophin protein and have deficits in satellite cell abundance and proliferative capacity. Wild type (WT) C57BL/6 J mice served as controls. Muscle fiber contractility was measured, along with changes in the transcriptome using RNA sequencing, and in the proteome, metabolome, and lipidome using mass spectrometry. RESULTS: While mdx/mTR mice displayed gross pathological changes and continued cycles of degeneration and regeneration, we found no differences in permeabilized fiber contractility between strains. However, there were numerous changes in the transcriptome and proteome related to protein balance, contractile elements, extracellular matrix, and metabolism. There was only a 53% agreement in fold-change data between the proteome and transcriptome. Numerous changes in markers of skeletal muscle metabolism were observed, with dystrophic muscles exhibiting elevated glycolytic metabolites such as 6-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate, fructose bisphosphate, phosphorylated hexoses, and phosphoenolpyruvate. CONCLUSIONS: These findings highlight the utility of multiomics in studying muscle disease, and provide additional insight into the pathological changes in dystrophic muscles that might help to indirectly guide evidence-based nutritional or exercise prescription in DMD patients.


Assuntos
Distrofia Muscular de Duchenne , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Animais , Modelos Animais de Doenças , Distrofina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Proteoma
4.
Am J Physiol Cell Physiol ; 319(5): C885-C894, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877217

RESUMO

Tendon is a dense connective tissue that stores and transmits forces between muscles and bones. Cellular heterogeneity is increasingly recognized as an important factor in the biological basis of tissue homeostasis and disease, yet little is known about the diversity of cell types that populate tendon. To address this, we determined the heterogeneity of cell populations within mouse Achilles tendons using single-cell RNA sequencing. In assembling a transcriptomic atlas of Achilles tendons, we identified 11 distinct types of cells, including three previously undescribed populations of tendon fibroblasts. Prior studies have indicated that pericytes, which are found in the vasculature of tendons, could serve as a potential source of progenitor cells for adult tendon fibroblasts. Using trajectory inference analysis, we provide additional support for the notion that pericytes are likely to be at least one of the progenitor cell populations for the fibroblasts that compose adult tendons. We also modeled cell-cell interactions and identified previously undescribed ligand-receptor signaling interactions involved in tendon homeostasis. Our novel and interactive tendon atlas highlights previously underappreciated heterogeneity between and within tendon cell populations. The atlas also serves as a resource to further the understanding of tendon extracellular matrix assembly and maintenance and in the design of therapies for tendinopathies.


Assuntos
Tendão do Calcâneo/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Pericitos/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Tendão do Calcâneo/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Comunicação Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Colágeno/genética , Colágeno/metabolismo , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Pericitos/citologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células-Tronco/citologia
5.
J Physiol ; 598(8): 1537-1550, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083717

RESUMO

KEY POINTS: Tendon is a hypocellular, matrix-rich tissue that has been excluded from comparative transcriptional atlases. These atlases have provided important knowledge about biological heterogeneity between tissues, and our study addresses this important gap. We performed measures on four of the most studied tendons, the Achilles, forepaw flexor, patellar and supraspinatus tendons of both mice and rats. These tendons are functionally distinct and are also among the most commonly injured, and therefore of important translational interest. Approximately one-third of the filtered transcriptome was differentially regulated between Achilles, forepaw flexor, patellar and supraspinatus tendons within either mice or rats. Nearly two-thirds of the transcripts that are expressed in anatomically similar tendons were different between mice and rats. The overall findings from this study identified that although tendons across the body share a common anatomical definition based on their physical location between skeletal muscle and bone, tendon is a surprisingly genetically heterogeneous tissue. ABSTRACT: Tendon is a functionally important connective tissue that transmits force between skeletal muscle and bone. Previous studies have evaluated the architectural designs and mechanical properties of different tendons throughout the body. However, less is known about the underlying transcriptional differences between tendons that may dictate their designs and properties. Therefore, our objective was to develop a comprehensive atlas of the transcriptome of limb tendons in adult mice and rats using systems biology techniques. We selected the Achilles, forepaw digit flexor, patellar, and supraspinatus tendons due to their divergent functions and high rates of injury and tendinopathies in patients. Using RNA sequencing data, we generated the Comparative Tendon Transcriptional Database (CTTDb) that identified substantial diversity in the transcriptomes of tendons both within and across species. Approximately 30% of filtered transcripts were differentially regulated between tendons of a given species, and nearly 60% of the filtered transcripts present in anatomically similar tendons were different between species. Many of the genes that differed between tendons and across species are important in tissue specification and limb morphogenesis, tendon cell biology and tenogenesis, growth factor signalling, and production and maintenance of the extracellular matrix. This study indicates that tendon is a surprisingly heterogenous tissue with substantial genetic variation based on anatomical location and species.


Assuntos
Tendão do Calcâneo , Tendinopatia , Animais , Matriz Extracelular , Humanos , Camundongos , Ratos , Análise de Sequência de RNA , Transcriptoma
6.
FASEB J ; 33(11): 12680-12695, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31536390

RESUMO

Tenocytes serve to synthesize and maintain collagen fibrils and other extracellular matrix proteins in tendon. Despite the high prevalence of tendon injury, the underlying biologic mechanisms of postnatal tendon growth and repair are not well understood. IGF1 plays an important role in the growth and remodeling of numerous tissues but less is known about IGF1 in tendon. We hypothesized that IGF1 signaling is required for proper tendon growth in response to mechanical loading through regulation of collagen synthesis and cell proliferation. To test this hypothesis, we conditionally deleted the IGF1 receptor (IGF1R) in scleraxis (Scx)-expressing tenocytes using a tamoxifen-inducible Cre-recombinase system and caused tendon growth in adult mice via mechanical overload of the plantaris tendon. Compared with control Scx-expressing IGF1R-positive (Scx:IGF1R+) mice, in which IGF1R is present in tenocytes, mice that lacked IGF1R in their tenocytes [Scx-expressing IGF1R-negative (Scx:IGF1RΔ) mice] demonstrated reduced cell proliferation and smaller tendons in response to mechanical loading. Additionally, we identified that both the PI3K/protein kinase B and ERK pathways are activated downstream of IGF1 and interact in a coordinated manner to regulate cell proliferation and protein synthesis. These studies indicate that IGF1 signaling is required for proper postnatal tendon growth and support the potential use of IGF1 in the treatment of tendon disorders.-Disser, N. P., Sugg, K. B., Talarek, J. R., Sarver, D. C., Rourke, B. J., Mendias, C. L. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais , Tendões/crescimento & desenvolvimento , Tenócitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Crescimento Insulin-Like I/genética , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
7.
FASEB J ; 33(7): 7863-7881, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30939247

RESUMO

Myosteatosis is the pathologic accumulation of lipid that can occur in conjunction with atrophy and fibrosis following skeletal muscle injury. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many clinical studies have demonstrated that the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our objective was to determine the pathologic changes that result in lipid accumulation in injured muscle fibers. We used a rat model of rotator cuff injury in this study because the rotator cuff muscle group is particularly prone to the development of myosteatosis after injury. Muscles were collected from uninjured controls or 10, 30, or 60 d after injury and analyzed using a combination of muscle fiber contractility assessments, RNA sequencing, and undirected metabolomics, lipidomics, and proteomics, along with bioinformatics techniques to identify potential pathways and cellular processes that are dysregulated after rotator cuff tear. Bioinformatics analyses indicated that mitochondrial function was likely disrupted after injury. Based on these findings and given the role that mitochondria play in lipid metabolism, we then performed targeted biochemical and imaging studies and determined that mitochondrial dysfunction and reduced fatty acid oxidation likely leads to the accumulation of lipid in myosteatosis.-Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., Mendias, C. L. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Transtornos Musculares Atróficos/metabolismo , Lesões do Manguito Rotador/patologia , Tecido Adiposo/patologia , Animais , Colágeno/análise , Perfilação da Expressão Gênica , Ontologia Genética , Lipidômica , Masculino , Metabolômica , Contração Muscular , Denervação Muscular , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/patologia , Oxirredução , Análise de Componente Principal , Proteômica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Lesões do Manguito Rotador/metabolismo , Análise de Sequência de RNA
8.
Am J Physiol Endocrinol Metab ; 316(5): E695-E706, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753114

RESUMO

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise's effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


Assuntos
Glucose/metabolismo , Resistência à Insulina , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Animais , Dieta Hiperlipídica , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Insulina/farmacologia , Gotículas Lipídicas/metabolismo , Masculino , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Ratos , Ratos Wistar , Comportamento Sedentário
9.
Am J Physiol Cell Physiol ; 314(4): C389-C403, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29341790

RESUMO

Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRß, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.


Assuntos
Fibroblastos/enzimologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Traumatismos dos Tendões/enzimologia , Tendões/enzimologia , Tendões/crescimento & desenvolvimento , Animais , Becaplermina/farmacologia , Benzimidazóis/farmacologia , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Matriz Extracelular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Masculino , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Traumatismos dos Tendões/genética , Traumatismos dos Tendões/patologia , Tendões/efeitos dos fármacos , Tendões/patologia
10.
Exp Physiol ; 103(11): 1513-1523, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30184287

RESUMO

NEW FINDINGS: What is the central question of this study? Can phenotypic traits associated with low response to one mode of training be extrapolated to other exercise-inducible phenotypes? The present study investigated whether rats that are low responders to endurance training are also low responders to resistance training. What is the main finding and its importance? After resistance training, rats that are high responders to aerobic exercise training improved more in maximal strength compared with low-responder rats. However, the greater gain in strength in high-responder rats was not accompanied by muscle hypertrophy, suggesting that the responses observed could be mainly neural in origin. ABSTRACT: The purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co-segregate for differences in muscle adaptations to ladder-climbing resistance training. Five high-responder (HRT) and five low-responder (LRT) rats completed the resistance training, while six HRT and six LRT rats served as sedentary control animals. Before and after the 6 week intervention, body composition was determined by dual energy X-ray absorptiometry. Before tissue harvesting, the right triceps surae muscles were loaded by electrical stimulation. Muscle fibre cross-sectional areas, nuclei per cell, phosphorylation status of selected signalling proteins of mTOR and Smad pathways, and muscle protein, DNA and RNA concentrations were determined for the right gastrocnemius muscle. The daily protein synthesis rate was determined by the deuterium oxide method from the left quadriceps femoris muscle. Tissue weights of fore- and hindlimb muscles were measured. In response to resistance training, maximal carrying capacity was greater in HRT (∼3.3 times body mass) than LRT (∼2.5 times body mass), indicating greater improvements of strength in HRT. However, muscle hypertrophy that could be related to greater strength gains in HRT was not observed. Furthermore, noteworthy changes within the experimental groups or differences between groups were not observed in the present measures. The lack of hypertrophic muscular adaptations despite considerable increases in muscular strength suggest that adaptations to the present ladder-climbing training in HRT and LRT rats were largely induced by neural adaptations.


Assuntos
Adaptação Fisiológica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Composição Corporal/fisiologia , Masculino , Ratos , Treinamento Resistido
11.
Muscle Nerve ; 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346717

RESUMO

INTRODUCTION: Patients with anterior cruciate ligament (ACL) tears have persistent quadriceps strength deficits that are thought to be due to altered neurophysiological function. Our goal was to determine the changes in muscle fiber contractility independent of the ability of motor neurons to activate fibers. METHODS: We obtained quadriceps biopsies of patients undergoing ACL reconstruction, and additional biopsies 1, 2, and 6 months after surgery. Muscles fiber contractility was assessed in vitro, along with whole muscle strength testing. RESULTS: Compared with controls, patients had a 30% reduction in normalized muscle fiber force at the time of surgery. One month later, the force deficit was 41%, and at 6 months the deficit was 23%. Whole muscle strength testing demonstrated similar trends. DISCUSSION: While neurophysiological dysfunction contributes to whole muscle weakness, there is also a reduction in the force generating capacity of individual muscle cells independent of alpha motor neuron activation. Muscle Nerve, 2018.

12.
J Sport Rehabil ; 26(2): 171-179, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27992284

RESUMO

Eccentric-contraction-induced skeletal muscle injuries, included in what is clinically referred to as muscle strains, are among the most common injuries treated in the sports medicine setting. Although patients with mild injuries often fully recover to their preinjury levels, patients who suffer moderate or severe injuries can have a persistent weakness and loss of function that is refractory to rehabilitation exercises and currently available therapeutic interventions. The objectives of this review were to describe the fundamental biophysics of force transmission in muscle and the mechanism of muscle-strain injuries, as well as the cellular and molecular processes that underlie the repair and regeneration of injured muscle tissue. The review also summarizes how commonly used therapeutic modalities affect muscle regeneration and opportunities to further improve our treatment of skeletal muscle strain injuries.


Assuntos
Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Atrofia Muscular/reabilitação , Regeneração/fisiologia , Entorses e Distensões/reabilitação , Humanos , Recuperação de Função Fisiológica/fisiologia
13.
J Hand Surg Am ; 41(1): 3-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26710728

RESUMO

PURPOSE: To test the potential for the ex situ limb perfusion system to prolong limb allograft survival up to 24 hours. METHODS: We used 20 swine for the study. In group 1 (control), 4 limbs were perfused with heparin solution and preserved at 4°C for 6 hours. In group 2, 4 limbs were perfused with autologous blood at 27°C to 32°C for 24 hours. In both groups, limbs were transplanted orthotopically to recipients and monitored for 12 hours. In addition to perfusion parameters, we recorded perfusate gases and electrolytes (pH, pCO2, pO2, O2 saturation, Na, K, Cl, Ca, HCO3, glucose, and lactate) and obtained functional electrostimulation hourly throughout the experiment. Histology samples were obtained for TUNEL staining and single-muscle fiber contractility testing. RESULTS: In both groups, hemodynamic variables of circulation remained stable throughout the experiment. Neuromuscular electrical stimulation remained intact until the end of reperfusion in group 2 vs no response in group 1. In group 2, a gradual increase in lactate levels during pump perfusion returned to normal after transplantation. Compared with the contralateral limb in group 2, single-muscle fiber contractility testing showed no significant difference at the end of the experiment. CONCLUSIONS: We demonstrated extended limb survival up to 24 hours using normothermic pulsatile perfusion and autologous blood. CLINICAL RELEVANCE: Successful prolongation of limb survival using ex situ perfusion methods provides with more time for revascularization of an extremity.


Assuntos
Transfusão de Sangue Autóloga , Fibrinolíticos/administração & dosagem , Membro Anterior/transplante , Sobrevivência de Enxerto , Heparina/administração & dosagem , Preservação de Órgãos/métodos , Perfusão/métodos , Aloenxertos , Amputação Cirúrgica , Animais , Biópsia , Estimulação Elétrica , Membro Anterior/irrigação sanguínea , Concentração de Íons de Hidrogênio , Contração Isométrica , Ácido Láctico/sangue , Modelos Animais , Fibras Musculares Esqueléticas/patologia , Potássio/sangue , Temperatura Cutânea , Suínos , Condicionamento Pré-Transplante/métodos
14.
J Shoulder Elbow Surg ; 25(9): 1501-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27068389

RESUMO

BACKGROUND: The repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair. MATERIALS AND METHODS: Adult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility. RESULTS: Inhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production. CONCLUSION: Inhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Piridinas/farmacologia , Manguito Rotador/metabolismo , Manguito Rotador/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fibrose/prevenção & controle , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Animais , RNA/metabolismo , Ratos Sprague-Dawley , Manguito Rotador/cirurgia
15.
Int Orthop ; 40(4): 759-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26224616

RESUMO

PURPOSE: Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. METHODS: Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. RESULTS: Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. CONCLUSIONS: As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Músculo Esquelético/patologia , Lesões do Manguito Rotador , Traumatismos dos Tendões/terapia , Cicatrização , Adulto , Animais , Doença Crônica , Fibrose , Humanos , Masculino , Ratos , Manguito Rotador/efeitos dos fármacos , Manguito Rotador/patologia , Células Estromais
16.
J Sport Rehabil ; 25(4)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632883

RESUMO

CONTEXT: Manual isometric muscle testing is a common clinical technique that is used to assess muscle strength. To provide the most accurate data for the test, the muscle being assessed should be at a length in which it produces maximum force. However there is tremendous variability in the recommended positions and joint angles used to conduct these tests, with little apparent objective data used to position the joint such that muscle force production is greatest. OBJECTIVE: To use validated anatomically and biomechanically-based musculoskeletal models to identify the optimal joint positions in which to perform manual isometric testing. DESIGN: In silico analysis. MAIN OUTCOME MEASURE: The joint position which produces maximum muscle force for 49 major limb and trunk muscles. RESULTS: The optimal joint position for performing a manual isometric test was determined. CONCLUSION: Using objective anatomical models that take into account the force-length properties of muscles, we identified joint positions in which net muscle force production was predicted to be maximal. This data can help health care providers to better assess muscle function when manual isometric strength tests are performed.

17.
J Physiol ; 593(8): 2037-52, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25640143

RESUMO

Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN(+/+) ) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTN(Δ/Δ) ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTN(Δ/Δ) rats demonstrated 20-33% increases in mass, 35-45% increases in fibre number, 20-57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTN(Δ/Δ) muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTN(Δ/Δ) rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Tendões/metabolismo , Animais , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Miostatina/genética , Ratos , Ratos Transgênicos
18.
Exerc Sport Sci Rev ; 43(2): 93-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25607281

RESUMO

Numerous studies in muscle and tendon have identified a central role of the transforming growth factor-ß (TGF-ß) superfamily of cytokines in the regulation of extracellular matrix growth and remodeling, protein degradation, and cell proliferation and differentiation. We provide a novel framework for TGF-ß and myostatin signaling in controlling the coordinated adaptation of both skeletal muscle and tendon tissue to resistance training.


Assuntos
Músculo Esquelético/metabolismo , Miostatina/metabolismo , Treinamento Resistido , Tendões/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adaptação Fisiológica , Animais , Humanos , Transdução de Sinais
19.
Clin Orthop Relat Res ; 473(1): 226-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25113269

RESUMO

BACKGROUND: Rotator cuff tears are a common source of shoulder pain and disability. Even after surgical repair, some patients continue to have reduced function and progression of fatty degeneration. Because patients with chronic cuff tears often experience muscle shortening, it is possible that repairing the tendon to its anatomic footprint induces a stretch-induced muscle injury that could contribute to failures of the repair and perhaps ongoing pain. QUESTIONS/PURPOSES: We hypothesized that, compared with acutely torn and repaired muscles, the stretch that is required to repair a chronically torn cuff would result in more muscle fiber damage. Specifically, we asked: (1) Is there muscle fiber damage that occurs from repair of an acutely torn rotator cuff and does it vary by location in the muscle; and (2) is the damage greater in the case of repair of a chronic injury? METHODS: We used an open surgical approach to create a full-thickness rotator cuff tear in rats, and measured changes in muscle mass, length, and the number of fibers containing the membrane impermeable Evans Blue Dye after acute (1 day) or chronic (28 days) cuff tear or repair in rats. Differences between groups were tested using a one-way ANOVA followed by Tukey's post hoc sorting. RESULTS: Chronic tears resulted in 24% to 35% decreases in mass and a 20% decrease in length. The repair of acutely and chronically torn muscles resulted in damage to 90% of fibers in the distal portion of the muscle. In the proximal portion, no differences between the acutely torn and repaired groups and controls were observed, whereas repairing the chronically torn group resulted in injury to almost 70% of fibers. CONCLUSIONS: In a rat model, marked injury to muscle fibers is induced when the tendons of torn rotator cuffs are repaired to their anatomic footprint. CLINICAL RELEVANCE: In this animal model, we found that repair of chronically torn cuff muscles results in extensive injury throughout the muscle. Based on these findings, we posit that inducing a widespread injury at the time of surgical repair of chronically torn rotator cuff muscles may contribute to the problems of failed repairs or continued progression of fatty degeneration that is observed in some patients that undergo rotator cuff repair. Therapeutic interventions to protect muscle fiber membranes potentially could enhance outcomes for patients undergoing rotator cuff repair. To evaluate this, future studies that evaluate the use of membrane sealing compounds or drugs that upregulate endogenous membrane-sealing proteins are warranted.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/lesões , Procedimentos Ortopédicos/efeitos adversos , Manguito Rotador/cirurgia , Traumatismos dos Tendões/cirurgia , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Masculino , Contração Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Ratos Sprague-Dawley , Lesões do Manguito Rotador , Estresse Mecânico , Traumatismos dos Tendões/patologia , Fatores de Tempo
20.
J Shoulder Elbow Surg ; 24(2): 280-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25213828

RESUMO

BACKGROUND: Chronic rotator cuff tears are a common source of shoulder pain and disability, and patients with chronic cuff tears often have substantial weakness, fibrosis, inflammation, and fat accumulation. Identifying therapies to prevent the development of these pathologic processes will likely have a positive impact on clinical outcomes. Simvastatin is a drug with demonstrated anti-inflammatory and antifibrotic effects in many tissues but had not previously been studied in the context of rotator cuff tears. We hypothesized that after the induction of a massive supraspinatus tear, simvastatin would protect muscles from a loss of force production and fibrosis. METHODS: We measured changes in muscle fiber contractility, histology, and biochemical markers of fibrosis and fatty infiltration in rats that received a full-thickness supraspinatus tear and were treated with either carrier alone or simvastatin. RESULTS: Compared with vehicle-treated controls, simvastatin did not have an appreciable effect on muscle fiber size, but treatment did increase muscle fiber specific force by 20%. Simvastatin also reduced collagen accumulation by 50% but did not affect triglyceride content of muscles. Several favorable changes in the expression of genes and other markers of inflammation, fibrosis, and regeneration were also observed. CONCLUSIONS: Simvastatin partially protected muscles from the weakness that occurs as a result of chronic rotator cuff tear. Fibrosis was also markedly reduced in simvastatin-treated animals. Whereas further studies are necessary, statin medication could potentially help improve outcomes for patients with rotator cuff tears.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Debilidade Muscular/prevenção & controle , Lesões do Manguito Rotador , Manguito Rotador/efeitos dos fármacos , Sinvastatina/farmacologia , Acetil-CoA C-Acetiltransferase/genética , Tecido Adiposo/patologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Biomarcadores , Fator de Ligação a CCAAT/genética , Doença Crônica , Proteínas da Matriz Extracelular/genética , Fibrose , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Masculino , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Debilidade Muscular/etiologia , Cadeias Pesadas de Miosina , PPAR gama/genética , Ratos , Ratos Sprague-Dawley , Regeneração/genética , Manguito Rotador/patologia , Ruptura/complicações , Dor de Ombro/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA