Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772404

RESUMO

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Assuntos
Bicarbonatos , Alvo Mecanístico do Complexo 1 de Rapamicina , Nucleotídeos , Simportadores de Sódio-Bicarbonato , Bicarbonatos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos/biossíntese , Fosforilação , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo
2.
Cell ; 158(3): 564-78, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083868

RESUMO

Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis. Surprisingly little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. We report that the transcriptional regulator heat shock factor 1 (HSF1) is frequently activated in cancer-associated fibroblasts (CAFs), where it is a potent enabler of malignancy. HSF1 drives a transcriptional program in CAFs that complements, yet is completely different from, the program it drives in adjacent cancer cells. This CAF program is uniquely structured to support malignancy in a non-cell-autonomous way. Two central stromal signaling molecules-TGF-ß and SDF1-play a critical role. In early-stage breast and lung cancer, high stromal HSF1 activation is strongly associated with poor patient outcome. Thus, tumors co-opt the ancient survival functions of HSF1 to orchestrate malignancy in both cell-autonomous and non-cell-autonomous ways, with far-reaching therapeutic implications.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Choque Térmico , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Crescimento Transformador beta/metabolismo
3.
Cell ; 150(3): 549-62, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863008

RESUMO

Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival, and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their nontransformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Fatores de Transcrição de Choque Térmico , Humanos , Neoplasias/patologia , Fatores de Transcrição/análise , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 121(29): e2313370121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985769

RESUMO

Heat Shock Factor 1 (HSF1) is best known as the master transcriptional regulator of the heat-shock response (HSR), a conserved adaptive mechanism critical for protein homeostasis (proteostasis). Combining a genome-wide RNAi library with an HSR reporter, we identified Jumonji domain-containing protein 6 (JMJD6) as an essential mediator of HSF1 activity. In follow-up studies, we found that JMJD6 is itself a noncanonical transcriptional target of HSF1 which acts as a critical regulator of proteostasis. In a positive feedback circuit, HSF1 binds and promotes JMJD6 expression, which in turn reduces heat shock protein 70 (HSP70) R469 monomethylation to disrupt HSP70-HSF1 repressive complexes resulting in enhanced HSF1 activation. Thus, JMJD6 is intricately wired into the proteostasis network where it plays a critical role in cellular adaptation to proteotoxic stress.


Assuntos
Proteínas de Choque Térmico HSP70 , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Histona Desmetilases com o Domínio Jumonji , Proteostase , Humanos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteostase/fisiologia , Retroalimentação Fisiológica , Adaptação Fisiológica , Células HEK293 , Estresse Proteotóxico
5.
Proc Natl Acad Sci U S A ; 120(17): e2217396120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068235

RESUMO

Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1-Orai1-Ca2+-calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2-calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.


Assuntos
Octopamina , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Astrócitos/metabolismo , Calcineurina/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Neuroproteção , Neurotransmissores/metabolismo , Octopamina/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(27): e2111262119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776542

RESUMO

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.


Assuntos
Dano ao DNA , Aptidão Genética , Proteínas Nucleares , Estresse Fisiológico , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Sequência Conservada , Dano ao DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Transdução de Sinais/genética , Estresse Fisiológico/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Acta Neuropathol ; 142(5): 887-898, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499219

RESUMO

Myositis comprises a heterogeneous group of skeletal muscle disorders which converge on chronic muscle inflammation and weakness. Our understanding of myositis pathogenesis is limited, and many myositis patients lack effective therapies. Using muscle biopsy transcriptome profiles from 119 myositis patients (spanning major clinical and serological disease subtypes) and 20 normal controls, we generated a co-expression network of 8101 dynamically regulated transcripts. This network organized the myositis transcriptome into a map of gene expression modules representing interrelated biological processes and disease signatures. Universally myositis-upregulated network modules included muscle regeneration, specific cytokine signatures, the acute phase response, and neutrophil degranulation. Universally myositis-suppressed pathways included a specific subset of myofilaments, the mitochondrial envelope, and nuclear isoforms of the anti-apoptotic humanin protein. Myositis subtype-specific modules included type 1 interferon signaling and titin (dermatomyositis), RNA processing (antisynthetase syndrome), and vasculogenesis (inclusion body myositis). Importantly, therapies exist to target influential proteins in many myositis-dysregulated modules, and nearly all modules contained understudied proteins and non-coding RNAs - many of which were extraordinarily dysregulated in myositis and may represent novel therapeutic targets. Finally, we apply our network to patient classification, finding that a deep learning algorithm trained on patient-level network "images" successfully assigned patients to clinical groups and further into molecular subclusters. Altogether, we provide a global resource to probe and contextualize differential gene expression in myositis.


Assuntos
Aprendizado Profundo , Redes Reguladoras de Genes/genética , Miosite/genética , Transcriptoma , Humanos , Miosite/classificação , Análise de Sequência de RNA/métodos
8.
Adv Exp Med Biol ; 1243: 69-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297212

RESUMO

Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.


Assuntos
Carcinogênese , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transformação Celular Neoplásica , Resposta ao Choque Térmico , Humanos
9.
Blood ; 130(12): 1430-1440, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28694326

RESUMO

Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.


Assuntos
Genômica , Linfoma Cutâneo de Células T/genética , Proteínas dos Microfilamentos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência de Bases , Genoma Humano , Células HEK293 , Humanos , Células Jurkat , Proteínas dos Microfilamentos/química , Mutação/genética , NF-kappa B/metabolismo , Oncogenes , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de DNA , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/genética
10.
Proc Natl Acad Sci U S A ; 113(21): 6065-70, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27114519

RESUMO

Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Modelos Moleculares , Proteínas Priônicas/química , Fatores de Terminação de Peptídeos/química , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
11.
Proc Natl Acad Sci U S A ; 111(51): 18297-302, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489079

RESUMO

The efficacy of hormonal therapies for advanced estrogen receptor-positive breast cancers is limited by the nearly inevitable development of acquired resistance. Efforts to block the emergence of resistance have met with limited success, largely because the mechanisms underlying it are so varied and complex. Here, we investigate a new strategy aimed at the very processes by which cancers evolve resistance. From yeast to vertebrates, heat shock protein 90 (HSP90) plays a unique role among molecular chaperones by promoting the evolution of heritable new traits. It does so by regulating the folding of a diverse portfolio of metastable client proteins, many of which mediate adaptive responses that allow organisms to adapt and thrive in the face of diverse challenges, including those posed by drugs. Guided by our previous work in pathogenic fungi, in which very modest HSP90 inhibition impairs resistance to mechanistically diverse antifungals, we examined the effect of similarly modest HSP90 inhibition on the emergence of resistance to antiestrogens in breast cancer models. Even though this degree of inhibition fell below the threshold for proteotoxic activation of the heat-shock response and had no overt anticancer activity on its own, it dramatically impaired the emergence of resistance to hormone antagonists both in cell culture and in mice. Our findings strongly support the clinical testing of combined hormone antagonist-low-level HSP90 inhibitor regimens in the treatment of metastatic estrogen receptor-positive breast cancer. At a broader level, they also provide promising proof of principle for a generalizable strategy to combat the pervasive problem of rapidly emerging resistance to molecularly targeted therapeutics.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos
12.
PLoS Pathog ; 10(2): e1003904, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516381

RESUMO

The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.


Assuntos
Proteínas de Ligação a DNA/genética , Interações Hospedeiro-Parasita/genética , Orthopoxvirus , Infecções por Poxviridae/genética , Fatores de Transcrição/genética , Replicação Viral/genética , Linhagem Celular , Imunofluorescência , Fatores de Transcrição de Choque Térmico , Humanos , Immunoblotting , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
PLoS Genet ; 9(10): e1003869, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204293

RESUMO

Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Domínio Catalítico/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/metabolismo , Humanos , Proteína 1 Homóloga a MutL , Proteínas MutL , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 110(43): 17308-13, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101514

RESUMO

DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging.


Assuntos
Reparo de Erro de Pareamento de DNA , Ouro/química , Nanopartículas/química , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , DNA Bacteriano/química , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Cinética , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Nanopartículas/ultraestrutura , Ligação Proteica , Soluções
15.
Proc Natl Acad Sci U S A ; 108(45): 18378-83, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042860

RESUMO

Heat-shock factor 1 (HSF1) is the master transcriptional regulator of the cellular response to heat and a wide variety of other stressors. We previously reported that HSF1 promotes the survival and proliferation of malignant cells. At this time, however, the clinical and prognostic significance of HSF1 in cancer is unknown. To address this issue breast cancer samples from 1,841 participants in the Nurses' Health Study were scored for levels of nuclear HSF1. Associations of HSF1 status with clinical parameters and survival outcomes were investigated by Kaplan-Meier analysis and Cox proportional hazard models. The associations were further delineated by Kaplan-Meier analysis using publicly available mRNA expression data. Our results show that nuclear HSF1 levels were elevated in ∼80% of in situ and invasive breast carcinomas. In invasive carcinomas, HSF1 expression was associated with high histologic grade, larger tumor size, and nodal involvement at diagnosis (P < 0.0001). By using multivariate analysis to account for the effects of covariates, high HSF1 levels were found to be independently associated with increased mortality (hazards ratio: 1.62; 95% confidence interval: 1.21-2.17; P < 0.0013). This association was seen in the estrogen receptor (ER)-positive population (hazards ratio: 2.10; 95% confidence interval: 1.45-3.03; P < 0.0001). In public expression profiling data, high HSF1 mRNA levels were also associated with an increase in ER-positive breast cancer-specific mortality. We conclude that increased HSF1 is associated with reduced breast cancer survival. The findings indicate that HSF1 should be evaluated prospectively as an independent prognostic indicator in ER-positive breast cancer. HSF1 may ultimately be a useful therapeutic target in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Núcleo Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias da Mama/patologia , Feminino , Proteínas de Choque Térmico/genética , Humanos , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , RNA Mensageiro/genética , Análise de Sobrevida , Análise Serial de Tecidos
16.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453366

RESUMO

The recently discovered HAPSTR1 protein broadly oversees cellular stress responses. This function requires HUWE1, a ubiquitin ligase that paradoxically marks HAPSTR1 for degradation, but much about this pathway remains unclear. Here, leveraging multiplexed proteomics, we find that HAPSTR1 enables nuclear localization of HUWE1 with implications for nuclear protein quality control. We show that HAPSTR1 is tightly regulated and identify ubiquitin ligase TRIP12 and deubiquitinase USP7 as upstream regulators titrating HAPSTR1 stability. Finally, we generate conditional Hapstr1 knockout mice, finding that Hapstr1-null mice are perinatal lethal, adult mice depleted of Hapstr1 have reduced fitness, and primary cells explanted from Hapstr1-null animals falter in culture coincident with HUWE1 mislocalization and broadly remodeled signaling. Notably, although HAPSTR1 potently suppresses p53, we find that Hapstr1 is essential for life even in mice lacking p53. Altogether, we identify novel components and functional insights into the conserved HAPSTR1-HUWE1 pathway and demonstrate its requirement for mammalian life.


Assuntos
Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
17.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38311120

RESUMO

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Assuntos
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Resposta ao Choque Térmico/genética , Biologia
18.
Cell Chem Biol ; 30(11): 1334-1336, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977128

RESUMO

The development of KRAS inhibitors was a remarkable feat, yet their efficacy is limited by inevitable resistance. In the September issue of Science, Lv et al.1 demonstrate how KRAS-driven cancers rewire signaling to restore protein homeostasis and acquire resistance to KRAS inhibitors with implications for novel combination therapeutic strategies.


Assuntos
Neoplasias , Proteostase , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Transdução de Sinais , Mutação
19.
Nat Commun ; 14(1): 152, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631436

RESUMO

We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Animais , Dano ao DNA/genética , Mamíferos/genética , Mamíferos/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
20.
Cell Rep Med ; 4(11): 101255, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909041

RESUMO

Defects in homologous recombination DNA repair (HRD) both predispose to cancer development and produce therapeutic vulnerabilities, making it critical to define the spectrum of genetic events that cause HRD. However, we found that mutations in BRCA1/2 and other canonical HR genes only identified 10%-20% of tumors that display genomic evidence of HRD. Using a networks-based approach, we discovered that over half of putative genes causing HRD originated outside of canonical DNA damage response genes, with a particular enrichment for RNA-binding protein (RBP)-encoding genes. These putative drivers of HRD were experimentally validated, cross-validated in an independent cohort, and enriched in cancer-associated genome-wide association study loci. Mechanistic studies indicate that some RBPs are recruited to sites of DNA damage to facilitate repair, whereas others control the expression of canonical HR genes. Overall, this study greatly expands the repertoire of known drivers of HRD, with implications for basic biology, genetic screening, and therapy stratification.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Estudo de Associação Genômica Ampla , Proteína BRCA2/genética , Recombinação Homóloga/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA