Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neural Plast ; 2018: 5851914, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275822

RESUMO

The regenerative capacity of CNS tracts has ever been a great hurdle to regenerative medicine. Although recent studies have described strategies to stimulate retinal ganglion cells (RGCs) to regenerate axons through the optic nerve, it still remains to be elucidated how these therapies modulate the inhibitory environment of CNS. Thus, the present work investigated the environmental content of the repulsive axon guidance cues, such as Sema3D and its receptors, myelin debris, and astrogliosis, within the regenerating optic nerve of mice submitted to intraocular inflammation + cAMP combined to conditional deletion of PTEN in RGC after optic nerve crush. We show here that treatment was able to promote axonal regeneration through the optic nerve and reach visual targets at twelve weeks after injury. The Regenerating group presented reduced MBP levels, increased microglia/macrophage number, and reduced astrocyte reactivity and CSPG content following optic nerve injury. In addition, Sema3D content and its receptors are reduced in the Regenerating group. Together, our results provide, for the first time, evidence that several regenerative repulsive signals are reduced in regenerating optic nerve fibers following a combined therapy. Therefore, the treatment used made the CNS microenvironment more permissive to regeneration.


Assuntos
Compressão Nervosa/efeitos adversos , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/patologia , Nervo Óptico/patologia , Nervo Óptico/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Óptico/ultraestrutura , Traumatismos do Nervo Óptico/metabolismo , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura
2.
J Neuroinflammation ; 14(1): 162, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821276

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. METHODS: Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. RESULTS: In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. CONCLUSIONS: Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Corpos Geniculados/patologia , Vias Visuais/patologia , Animais , Quelantes/toxicidade , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Corpos Geniculados/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Visuais/efeitos dos fármacos
3.
J Pharm Pharmacol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733604

RESUMO

OBJECTIVES: This work investigated the acute antinociceptive effect of a synthetic chalcone, 4-dimethylamino chalcone (DMAC), as well as its effects on vincristine-induced peripheral neuropathy (VIPN) in mice. METHODS: The inhibitory activity of myeloperoxidase was assessed by measuring HOCl formation. Formalin and hot plate tests were used to study the acute antinociceptive effect of DMAC. VIPN was induced through the administration of vincristine sulphate (0.1 mg/kg, i.p., 14 days). Then, DMSO, DMAC (10 or 30 mg/kg; i.p.), or pregabalin (10 mg/kg, i.p.) were administered for 14 consecutive days. Thermal hyperalgesia and mechanical allodynia were evaluated before and after VIPN induction and on days 1, 3, 7, and 14 of treatment. Neurodegeneration and neuroinflammation were assessed through immunohistochemistry for NF200, iNOS, and arginase-1 within the sciatic nerve. KEY FINDINGS: DMAC inhibited myeloperoxidase activity in vitro and presented an acute antinociceptive effect in both formalin and hot plate tests, with the involvement of muscarinic and opioid receptors. Treatment with 30 mg/kg of DMAC significantly attenuated thermal hyperalgesia and mechanical allodynia and prevented macrophage proinflammatory polarisation in VIPN mice. CONCLUSIONS: Our results show that DMAC, acting through different mechanisms, effectively attenuates VIPN.

4.
Neural Regen Res ; 18(1): 23-30, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35799504

RESUMO

Injuries to the spinal cord result in permanent disabilities that limit daily life activities. The main reasons for these poor outcomes are the limited regenerative capacity of central neurons and the inhibitory milieu that is established upon traumatic injuries. Despite decades of research, there is still no efficient treatment for spinal cord injury. Many strategies are tested in preclinical studies that focus on ameliorating the functional outcomes after spinal cord injury. Among these, molecular compounds are currently being used for neurological recovery, with promising results. These molecules target the axon collapsed growth cone, the inhibitory microenvironment, the survival of neurons and glial cells, and the re-establishment of lost connections. In this review we focused on molecules that are being used, either in preclinical or clinical studies, to treat spinal cord injuries, such as drugs, growth and neurotrophic factors, enzymes, and purines. The mechanisms of action of these molecules are discussed, considering traumatic spinal cord injury in rodents and humans.

5.
Antioxidants (Basel) ; 12(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371967

RESUMO

Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.

6.
Brain Res Bull ; 166: 150-160, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232742

RESUMO

Recently, regeneration of CNS tracts has been partially accomplished by strategies of intrinsic neuronal growth stimulation. However, restoration of function is dependent on proper myelination of regenerating axons. Previous work from our group (Goulart et al., 2018) has shown an increase in oligodendrocyte staining in the regenerating optic nerve, 2 weeks after crush, in animals that were submitted to conditional deletion of pten gene in retinal ganglion cells and intravitreal injection of zymosan + cAMP. Thus, in the present study we aimed to investigate the maturation of the oligodendroglial lineage and myelination during the regeneration of the optic nerve under the same conditions of our previous work. We showed that the combined treatment promoted an increase of myelinated fibers within the optic nerve, 12 weeks after lesion, as well as an increase in Sox10 positive cells. Early-OPCs, positive to A2B5, were also increased at 12 weeks, whereas O4 positive, late-OPCs, were increased from 2 until 12 weeks after crush. At 12 weeks after crush, the optic nerve of Regenerating group presented more CC1 positive oligodendrocytes and increased MRF positive myelinating oligodendrocytes, culminating in CTB traced regenerating axons superimposed to MBP staining, suggestive of myelination. Thus, our work showed that conditional deletion of pten gene in retinal ganglion cells and intravitreal inflammatory stimuli + cAMP stimulate full maturation of the olidodendroglial lineage, from OPC proliferation and differentiation to myelination of regenerating CNS axons.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Nervo Óptico/fisiologia , Remielinização/fisiologia , Animais , Linhagem da Célula , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/citologia , Nervo Óptico/citologia
7.
Neural Regen Res ; 15(4): 625-635, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638084

RESUMO

Diabetes is a lifelong disease characterized by glucose metabolic imbalance, in which low insulin levels or impaired insulin signaling lead to hyperglycemic state. Within 20 years of diabetes progression, 95% of patients will have diabetic retinopathy, the leading cause of visual defects in working-age people worldwide. Although diabetes is considered a microvascular disease, recent studies have shown that neurodegeneration precedes vascular changes within the diabetic visual system, albeit its mechanisms are still under investigation. Neuroinflammation and oxidative stress are intrinsically related phenomena, since macrophage/microglia and astrocytes are the main sources of reactive oxygen species during central nervous system chronic degenerative diseases, and both pathological processes are increased in the visual system during diabetes. The present review will focus on recent findings of the contribution of oxidative stress derived from neuroinflammation in the early neurodegenerative aspects of the diabetic visual system and their relationship with galectin-3.

8.
Exp Neurol ; 311: 148-161, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312606

RESUMO

Lesions in the central nervous system (CNS) can often induce structural reorganization within intact circuits of the brain. Several studies show advances in the understanding of mechanisms of brain plasticity and the role of the immune system activation. Microglia, a myeloid derived cell population colonizes the CNS during early phases of embryonic development. In the present study, we evaluated the role of microglial activation in the sprouting of intact axons following lesions of the visual pathways. We evaluated the temporal course of microglial activation in the superior colliculus following a contralateral monocular enucleation (ME) and the possible involvement of microglial cells in the plastic reorganization of the intact, uncrossed, retinotectal pathway from the remaining eye. Lister Hooded rats were enucleated at PND 10 and submitted to systemic treatment with inhibitors of microglial activation: cyclosporine A and minocycline. The use of neuroanatomical tracers allowed us to evaluate the time course of structural axonal plasticity. Immunofluorescence and western blot techniques were used to observe the expression of microglial marker, Iba-1 and the morphology of microglial cells. Following a ME, Iba-1 immunoreactivity showed a progressive increase of microglial activation in the contralateral SC at 24 h, peaking at 72 h after the lesion. Treatment with inhibitors of microglial activation blocked both the structural plasticity of intact uncrossed retinotectal axons and microglial activation as seen by the decrease of Iba-1 immunoreactivity. The local blockade of TNF-α with a neutralizing antibody was also able to block axonal plasticity of the intact eye following a ME. The data support the hypothesis that microglial activation is a necessary step for the regulation of neuroplasticity induced by lesions during early brain development.


Assuntos
Axônios/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Vias Visuais/metabolismo , Animais , Animais Recém-Nascidos , Axônios/química , Química Encefálica/fisiologia , Enucleação Ocular/efeitos adversos , Enucleação Ocular/tendências , Microglia/química , Ratos , Fatores de Tempo , Vias Visuais/química , Vias Visuais/patologia
9.
Brain Res ; 1700: 126-137, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016630

RESUMO

Diabetic retinopathy is the leading cause of acquired blindness in working-age individuals. Recent work has revealed that neurodegeneration occurs earlier than vascular insult and that distal optic nerve damage precedes retinal degeneration and vascular insult. Since we have shown that optic nerve degeneration is reduced after optic nerve crush in Galectin-3 knockout (Gal-3 -/-) mice, we decided to investigate whether Gal-3 -/- could relieve inflammation and preserve both neurons and the structure of the retina and optic nerve following 8 weeks of diabetes. Diabetes was induced in 2-month-old male C57/bl6 WT or Gal-3 -/- mice by a single injection of streptozotocin (160 mg/kg). Histomorphometric retinal analyses showed no gross difference, except for a reduced number of retinal ganglion cells in WT diabetic mice, correlated to increased apoptosis. In the optic nerve, Gal-3 -/- mice showed reduced neuroinflammation, suggested by the smaller number of Iba1+ cells, particularly the amoeboid profiles in the distal end. Furthermore, iNOS staining was reduced in the optic nerves of Gal-3 -/- mice, as well as GFAP in the distal segment of the optic nerve. Finally, optic nerve histomorphometric analyses revealed that the number of myelinated fibers was higher in the Gal-3 -/- mice and myelin was more rectilinear compared to WT diabetic mice. Therefore, the present study provided evidence that Gal-3 is a central target that stimulates neuroinflammation and impairs neurological outcomes in visual complications of diabetes. Our findings provide support for the clinical use of Gal-3 inhibitors against diabetic visual complications in the near future.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Galectina 3/deficiência , Inflamação/metabolismo , Neuroproteção/fisiologia , Nervo Óptico/metabolismo , Retina/metabolismo , Animais , Apoptose/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Galectina 3/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Nervo Óptico/patologia , Retina/patologia
10.
Neural Regen Res ; 13(10): 1811-1819, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136697

RESUMO

Poly(lactic acid) (PLA)-containing nerve guidance conduits (NGCs) are currently being investigated for nerve repair as an alternative to autograft, which leads to permanent functional impairment in the territory innervated by the removed nerve. Combination of polymers modifies the physical properties of the conduits, altering their nerve-guidance properties. Conduits made from PLA-only or combined with other polymers have been used successfully for nerve repair, but their efficiency has not been compared. We compared the morphological and functional outcomes of peripheral nerve repair by using NGCs made of poly(lactic acid) and combined or not with polycaprolactone (PLA/PCL) or polyvinylpyrrolidone (PLA/PVP). To assess the functional recovery, we employed a mechanical hyperalgesia analysis, sciatic functional index (SFI), and electroneuromyography. The mechanical hyperalgesia analysis showed that the PLA group improved more rapidly than the PLA/PVP and PLA/PCL groups; similarly, in the electroneuromyography assay, the PLA group exhibited higher amplitude than the PLA/PCL and PLA/PVP groups. However, the SFI improvement rates did not differ among the groups. Morphologically, the PLA group showed more vascularization, while the nerve fiber regeneration did not differ among the groups. In conclusion, the PLA-only conduits were superior to the other NGCs tested for nerve repair.

12.
Histol Histopathol ; 32(3): 253-262, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27255346

RESUMO

A trauma to the mature central nervous system (CNS) often leads to persistent deficits, due to the inability of axons to regenerate after being injured. Increasing evidence suggests that pro-inflammatory and pro-apoptotic genes can present a major obstacle to promoting neuroprotection of retinal ganglion cells and consequently succeed in axonal regeneration. This study evaluated the effect of the absence of galectin-3 (Gal-3) on retinal ganglion cells (RGC) survival and axonal regeneration/degeneration after optic nerve crush injury. Two weeks after crush there was a 2.6 fold increase in the rate of cell survival in Gal-3-/- mice (1283±79.15) compared to WT animals (495.4±53.96). However, no regeneration was observed in the Gal-3-/- mice two weeks after lesion. Furthermore, axonal degeneration presented a particular pattern on those mice; Electron Microscopy (EM) analysis showed incomplete axon degeneration while the WT mice presented an advanced stage of degeneration. This suggests that the removal of the nerve fibers in the Gal 3-/- mice could be deficient and this would cause a delay in the process of Wallerian degeneration once there is a decrease in the number of macrophages/microglia in the nerve. This study demonstrates how the absence of Gal-3 can affect RGC survival and optic nerve regeneration/degeneration after lesion. Our results suggest that the absence of Gal-3 plays an important role in the survival of RGC and thus can be a potential target for therapeutic intervention in RGC neuroprotection.


Assuntos
Galectina 3/metabolismo , Regeneração Nervosa/fisiologia , Neuroproteção/fisiologia , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Compressão Nervosa , Degeneração Neural/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo
14.
Exp Neurol ; 234(1): 220-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22227060

RESUMO

The development and maturation of sensory systems depends on the correct pattern of connections which occurs during a critical period when axonal elimination and synaptic plasticity are involved in the formation of topographical maps. Among the mechanisms involved in synaptic stabilization, essential fatty acids (EFAs), available only through diet, appear as precursors of signaling molecules involved in modulation of gene expression and neurotransmitter release. Omega-3 fatty acids, such as docosahexaenoic acid (DHA), are considered EFAs and are accumulated in the brain during fetal period and neonatal development. In this study, we demonstrated the effect of omega-3/DHA nutritional restriction in the long-term stabilization of connections in the visual system. Female rats were fed 5 weeks before mating with either a control (soy oil) or a restricted (coconut oil) diet. Litters were fed until postnatal day 13 (PND13), PND28 or PND42 with the same diets when they received an intraocular injection of HRP. Another group received a single retinal lesion at the temporal periphery at PND21. Omega-3 restriction induced an increase in the optical density in the superficial layers of the SC, as a result of axonal sprouting outside the main terminal zones. This effect was observed throughout the SGS, including the ventral and intermediate sub-layers at PND13 and also at PND28 and PND42. The quantification of optical densities strongly suggests a delay in axonal elimination in the omega3(-) groups. The supplementation with fish oil (DHA) was able to completely reverse the abnormal expansion of the retinocollicular projection. The same pattern of expanded terminal fields was also observed in the ipsilateral retinogeniculate pathway. The critical period window was studied in lesion experiments in either control or omega-3/DHA restricted groups. DHA restriction induced an increased sprouting of intact, ipsilateral axons at the deafferented region of the superior colliculus compared to the control group, revealing an abnormal extension of the critical period. Finally, in omega-3 restricted group we observed in the collicular visual layers normal levels of GAP-43 with decreased levels of its phosphorylated form, p-GAP-43, consistent with a reduction in synaptic stabilization. The data indicate, therefore, that chronic dietary restriction of omega-3 results in a reduction in DHA levels which delays axonal elimination and critical period closure, interfering with the maintenance of terminal fields in the visual system.


Assuntos
Período Crítico Psicológico , Ácidos Graxos Ômega-3/metabolismo , Desnutrição/patologia , Vias Visuais/crescimento & desenvolvimento , Fatores Etários , Animais , Animais Recém-Nascidos , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Feminino , Proteína GAP-43/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Masculino , Desnutrição/etiologia , Fosforilação , Gravidez , Ratos , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Colículos Superiores/patologia , Sinapses/patologia , Vias Visuais/metabolismo
15.
Neurosci Lett ; 477(1): 23-7, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20406666

RESUMO

The retinotectal projection of rodents presents a precise retinotopic organization that develops, from diffuse connections, from the day of birth to post-natal day 10. Previous data had demonstrated that these projections undergo reorganization after retinal lesions, nerve crush and monocular enucleation. The axonal growth seems to be directly related to growth-associated protein-43 (GAP-43) expression, a protein predominantly located in growth cones, which is regulated throughout development. GAP-43 is presented both under non-phosphorylated and phosphorylated (pGAP-43) forms. The phosphorylated form, has been associated to axon growth via polymerization of F-actin, and synaptic enhancement through neurotransmitter release facilitation. Herein we investigated the spatio-temporal expression of GAP-43 in the rat superior colliculus during normal development and after monocular enucleation in different stages of development. Lister Hooded rats ranging from post-natal day 0 to 70 were used for ontogeny studies. Another group of animals were submitted to monocular enucleation at post-natal day 10 (PND10) or PND21. After different survival-times, the animals were sacrificed and the brains processed for either immunohistochemistry or western blotting analysis. Our data show that GAP-43 is expressed in retinotectal axons in early stages of development but remains present in adulthood. Moreover, monocular enucleation leads to an increase in pGAP-43 expression in the deafferented colliculus. Taken together these results suggest a role for pGAP-43 in retinotectal morphological plasticity observed both during normal development and after monocular enucleation.


Assuntos
Proteína GAP-43/biossíntese , Colículos Superiores/metabolismo , Animais , Axônios/metabolismo , Enucleação Ocular , Ratos , Colículos Superiores/crescimento & desenvolvimento , Fatores de Tempo , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA