Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(15): 9681-9692, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32644805

RESUMO

The development of environmentally benign hydrometallurgical processes to treat spent lithium-ion batteries (LIBs) is a critical aspect of the electronic-waste circular economy. Herein, as an alternative to the highly explosive H2O2, discarded orange peel powder (OP) is valorized as a green reductant for the leaching of industrially produced LIBs scraps in citric acid (H3Cit) lixiviant. The reductive potential of the cellulose- and antioxidant-rich OP was validated using the 3,5-dinitrosalicylic acid and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid assays. Leaching parameters such as OP concentration (200 mg), processing temperature (100 °C), H3Cit concentration (1.5 M), reaction duration (4 h), and slurry density (25 g/mL) were systematically optimized to achieve 80-99% leaching efficiencies of Ni, Mn, Co, and Li from the LIB "black mass". Importantly, solid side-streams generated by the OP-enabled leaching displayed negligible cytotoxicity in three different human cell lines, suggesting that the process is environmentally safe. As a proof of concept, Co(OH)2 was selectively recovered from the green lixiviant and subsequently utilized to fabricate new batches of LiCoO2 (LCO) coin cell batteries. Galvanostatic charge-discharge test revealed that the regenerated batteries exhibited initial charge and discharge values of 120 and 103 mAh/g, respectively, which is comparable to the performance of commercial LCO batteries. The use of fruit peel waste to recover valuable metals from spent LIBs is an effective, ecofriendly, and sustainable strategy to minimize the environmental footprint of both waste types.


Assuntos
Lítio , Substâncias Redutoras , Fontes de Energia Elétrica , Frutas , Peróxido de Hidrogênio , Reciclagem
2.
ACS Appl Mater Interfaces ; 12(20): 22862-22872, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32343545

RESUMO

Although "water-in-salt" electrolytes have opened a new pathway to expand the electrochemical stability window of aqueous electrolytes, the electrode instability and irreversible proton co-insertion caused by aqueous media still hinder the practical application, even when using exotic fluorinated salts. In this study, an accessible hybrid electrolyte class based on common sodium salts is proposed, and crucially an ethanol-rich media is introduced to achieve highly stable Na-ion electrochemistry. Here, ethanol exerts a strong hydrogen-bonding effect on water, simultaneously expanding the electrochemical stability window of the hybridized electrolyte to 2.5 V, restricting degradation activities, reducing transition metal dissolution from the cathode material, and improving electrolyte-electrode wettability. The binary ethanol-water solvent enables the impressive cycling of sodium-ion batteries based on perchlorate, chloride, and acetate electrolyte salts. Notably, a Na0.44MnO2 electrode exhibits both high capacity (81 mAh g-1) and a remarkably long cycle life >1000 cycles at 100 mA g-1 (a capacity decay rate per cycle of 0.024%) in a 1 M sodium acetate system. The Na0.44MnO2/Zn full cells also show excellent cycling stability and rate capability in a wide temperature range. The gained understanding of the hydrogen-bonding interactions in the hybridized electrolyte can provide new battery chemistry guidelines in designing promising candidates for developing low-cost and long-lifespan batteries based on other (Li+, K+, Zn2+, Mg2+, and Al3+) systems.

3.
ACS Nano ; 13(11): 12969-12979, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31702132

RESUMO

Electrocatalysts are one of the most important parts for oxygen evolution reaction (OER) to overcome the sluggish kinetics. Herein, amorphous Fe-Ni-P-B-O (FNPBO) nanocages as efficient OER catalysts are synthesized by a simple low-cost and scalable method at room temperature. The samples are chemically stable, in clear contrast to reported unstable or even pyrophoric boride samples. The Fe/Ni ratio of the FNPBO nanocages can be continuously adjusted to optimize the OER catalytic performance. The FNPBO nanocages composed of multicomponent elements can weaken the metal-metal bonds, thus rearranging the electron density around the catalytic metal atom centers and reducing the energy barrier for intermediate formation. Hence the optimized FNPBO (Fe6.4Ni16.1P12.9B4.3O60.2) catalyst shows superior intrinsic electrocatalytic activity for OER. The low overpotential to afford the current density of 10 mA cm-2 (236 mV), the small Tafel slope (39 mV dec-1), and the high specific current density (26.44 mA cm-2) at a given overpotential of 300 mV make a sharp contrast to state-of-the-art RuO2 (327 mV, 136 mV dec-1, and 0.028 mA cm-2, respectively).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA