RESUMO
Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.
Assuntos
Microbioma Gastrointestinal , Ileíte , Camundongos , Animais , Disbiose , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Ácidos Graxos/metabolismoRESUMO
Studies have investigated associations between maternal exposure to PFAS and preterm birth, but the impact of paternal and overall family exposure to PFAS mixtures on preterm birth remains unknown. To address this knowledge gap, a total of 355 preterm births and 481 controls were selected for a family-based birth cohort study in a coastal area of China, between 2016 and 2018. Seven PFAS, including perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were quantified in maternal, paternal and neonatal sera. Preterm birth was defined as live delivery at <37 completed gestational weeks. Bayesian kernel machine regression (BKMR) model was used to inspect the combined effect of family PFAS mixtures. Latent class analysis was used to identify family-level PFAS exposure profiles. Multiple linear regression analysis showed higher odds of preterm birth in association with higher maternal PFBA (OR = 1.16, 95%CI:1.09, 1.25), PFOA (OR = 1.51, 95%CI:1.27, 1.80), PFOS (OR = 2.07, 95%CI:1.70, 2.52) and PFNA (OR = 1.36, 95%CI: 1.01, 1.83), and neonatal PFBA (OR = 1.16, 95%CI:1.05,1.29), PFHxA (OR = 1.46, 95%CI:1.32, 1.62), PFHxS (OR = 1.15, 95%CI:1.05, 1.26) and PFNA (OR = 1.30, 95%CI:1.09,1.56). The associations were reversed between individual paternal PFAS exposures and preterm birth. At the family level, higher PFAS mixture concentration was associated with higher odds of preterm birth. In particular, higher PFNA and PFDA exposure was associated with greater preterm birth risk (OR = 2.55, 95%CI:1.45, 4.50). The PFAS-preterm association was modified by family-level seafood consumption. Our results suggest that higher family-level PFNA and PFDA exposure was associated with greater preterm birth risk, although the results for individual paternal, maternal and neonatal PFAS exposures were contradictory. If replicated in other coastal areas, these findings highlight a need to focus on the family triad and to consider seafood consumption when assessing the reproductive toxicity of PFAS exposure.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Nascimento Prematuro , Efeitos Tardios da Exposição Pré-Natal , Teorema de Bayes , Coorte de Nascimento , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , GravidezRESUMO
SnS2 has been widely studied as an anode material for sodium-ion batteries (SIBs) based on the high theoretical capacity and layered structure. Unfortunately, rapid capacity decay associated with volume variation during cycling limits practical application. Herein, SnS2 /Co3 S4 hollow nanocubes anchored on S-doped graphene are synthesized for the first time via coprecipitation and hydrothermal methods. When applied as the anode for SIBs, the sample delivers a distinguished charge specific capacity of 1141.8 mAh g-1 and there is no significant capacity decay (0.1 A g-1 for 50 cycles). When the rate is increased to 0.5 A g-1 , it presents 845.7 mAh g-1 after cycling 100 times. Furthermore, the composite also exhibits an ultrafast sodium storage capability where 392.9 mAh g-1 can be obtained at 10 A g-1 and the charging time is less than 3 min. The outstanding electrochemical properties can be ascribed to the enhancement of conductivity for the addition of S-doped graphene and the existence of p-n junctions in the SnS2 /Co3 S4 heterostructure. Moreover, the presence of mesopores between nanosheets can alleviate volume expansion during cycling as well as being beneficial for the migration of Na+ .