Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 316(1): E73-E85, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422704

RESUMO

Increased circulating branched-chain amino acids (BCAAs) have been involved in the pathogenesis of obesity and insulin resistance (IR). However, evidence relating berberine (BBR), gut microbiota, BCAAs, and IR is limited. Here, we showed that BBR could effectively rectify steatohepatitis and glucose intolerance in high-fat diet (HFD)-fed mice. BBR reorganized gut microbiota populations under both the normal chow diet (NCD) and HFD. Particularly, BBR noticeably decreased the relative abundance of BCAA-producing bacteria, including order Clostridiales; families Streptococcaceae, Clostridiaceae, and Prevotellaceae; and genera Streptococcus and Prevotella. Compared with the HFD group, predictive metagenomics indicated a reduction in the proportion of gut microbiota genes involved in BCAA biosynthesis but the enrichment genes for BCAA degradation and transport by BBR treatment. Accordingly, the elevated serum BCAAs of HFD group were significantly decreased by BBR. Furthermore, the Western blotting results implied that BBR could promote the BCAA catabolism in the liver and epididymal white adipose tissues of HFD-fed mice by activation of the multienzyme branched-chain α-ketoacid dehydrogenase complex (BCKDC), whereas by inhibition of the phosphorylation state of BCKDHA (E1α subunit) and branched-chain α-ketoacid dehydrogenase kinase (BCKDK). The ex vivo assay further confirmed that BBR could increase BCAA catabolism in both AML12 hepatocytes and 3T3-L1 adipocytes. Finally, data from healthy subjects and diabetics confirmed that BBR could improve glycemic control and modulate circulating BCAAs. Together, our findings clarified BBR improving IR associated not only with gut microbiota alteration in BCAA biosynthesis but also with BCAA catabolism in liver and adipose tissues.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/efeitos dos fármacos , Berberina/farmacologia , Disbiose/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Fígado/efeitos dos fármacos , Obesidade/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso , Feminino , Microbioma Gastrointestinal/genética , Intolerância à Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Metagenômica , Camundongos , Pessoa de Meia-Idade , Proteínas Quinases
2.
Polymers (Basel) ; 11(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795517

RESUMO

Recently, the nanofiber materials derived from natural polymers instead of petroleum-based polymers by electrospinning have aroused a great deal of interests. The lignocellulosic biomass could not be electrospun into nanofiber directly due to its poor solubility. Here, sugarcane bagasse (SCB) was subjected to the homogeneous esterification with different anhydrides, and the corresponding esterified products (SCB-A) were obtained. It was found that the bead-free and uniform nanofibers were obtained via electrospinning even when the mass fraction of acetylated SCB was 70%. According to the thermogravimetric analyses, the addition of SCB-A could improve the thermal stability of the electrospun composite nanofibers. More importantly, in contrast to the pure polyacrylonitrile (PAN) based carbon nanofiber, the SCB-A based carbon nanofibers had higher electrical conductivity and the surface N element content. In addition, the superfine carbon nanofiber mats with minimum average diameter of 117.0 ± 13.7 nm derived from SCB-A were obtained, which results in a larger Brunauer-Emmett-Teller (BET) surface area than pure PAN based carbon nanofiber. These results demonstrated that the combination of the homogeneous esterification and electrospinning could be a feasible and potential way to produce the bio-based carbon nanofibers directly from lignocellulosic without component separation.

3.
Front Pharmacol ; 9: 633, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962950

RESUMO

Xueshuantong Lyophilized Powder (XST), consisting of a series of saponins extracted from Panax notoginseng, is widely applied to treat acute cerebral infarction, stroke, and coronary heart disease in China. However, most adverse drug reactions (ADR) in clinic are caused by quality problems of XST. In this study, six batches of certainly abnormal, four batches of possibly abnormal XST, and eight batches of normal XST were obtained from the clinical practice. Their quality fluctuations were identified by ultra-performance liquid chromatography coupled with an electrospray ionization quadrupole time-of-flight mass spectrometry operating in MSE mode (UPLC-QTOF/MSE) and bioassays including antithrombin and proplasmin assay. Fourteen potential components responsible for clinical ADR were identified by UPLC-QTOF/MSE, especially ginsenoside Rg1, Rg3, Rb1 and notoginsenoside R1. In addition, 83.3% (5/6) and 50.0% (3/6) certainly abnormal samples could be identified by UPLC-QTOF/MSE and bioassay, respectively. Interestingly, further integration of the two methods could entirely identify all the certainly abnormal samples and inferred that all the possibly abnormal samples were closely related to their quality fluctuation. It indicates that it is advisable to combine UPLC-QTOF/MSE and bioassay for identifying quality fluctuation of XST, and thus reduce its ADR in clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA