Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Physiol Plant ; 176(2): e14283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38627963

RESUMO

Over the past few years, the study of plant-derived nanovesicles (PDNVs) has emerged as a hot topic of discussion and research in the scientific community. This remarkable interest stems from their potential role in facilitating intercellular communication and their unique ability to deliver biologically active components, including proteins, lipids, and miRNAs, to recipient cells. This fascinating ability to act as a molecular courier has opened up an entirely new dimension in our understanding of plant biology. The field of research focusing on the potential applications of PDNVs is still in its nascent stages. However, it has already started gaining traction due to the growing interest in its possible use in various branches of biotechnology and medicine. Their unique properties and versatile applications offer promising future research and development prospects in these fields. Despite the significant progress in our understanding, many unanswered questions and mysteries surround the mechanisms by which PDNVs function and their potential applications. There is a dire need for further extensive research to elucidate these mechanisms and explore the full potential of these fascinating vesicles. As the technology at our disposal advances and our understanding of PDNVs deepens, it is beyond doubt that PDNVs will continue to be a subject of intense research in anti-aging therapeutics. This comprehensive review is designed to delve into the fascinating and multifaceted world of PDNV-based research, particularly focusing on how these nanovesicles can be applied to anti-aging therapeutics.


Assuntos
Biotecnologia
2.
Mycorrhiza ; 34(1-2): 107-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151658

RESUMO

The Andean paramo, hereafter "paramo", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation. Previous findings also suggest that non-(NM) and facultatively mycorrhizal (FM) species predominate over obligatory mycorrhizal (OM) species at high elevations. However, these expectations have never been tested outside of the northern temperate zone. We addressed the distribution and environmental drivers of plant mycorrhizal types (AM, ECM and ERM) and statuses (NM, FM and OM) along the paramo's elevational gradient. We used vegetation plots from the VegParamo database, climatic and edaphic data from online repositories, and up-to-date observation information about plant mycorrhizal traits at species and genus level, the latter being proposed as hypotheses. AM plants were dominant along the entire gradient, and ERM plants were most abundant at the lowest elevations (2500-3000 m). The share of FM plants increased and that of OM plants decreased with elevation, while NM plants increased above 4000 m. Temperature and soil pH were positively related to the abundance of AM plants and negatively to ERM plants. Our results reveal patterns that contrast with those observed in temperate northern-hemisphere ecosystems.


Assuntos
Micorrizas , Simbiose , Ecossistema , Plantas , Biodiversidade , Solo , Microbiologia do Solo
3.
Ecol Lett ; 26(11): 1862-1876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37766496

RESUMO

Mycorrhizal symbioses are known to strongly influence plant performance, structure plant communities and shape ecosystem dynamics. Plant mycorrhizal traits, such as those characterising mycorrhizal type (arbuscular (AM), ecto-, ericoid or orchid mycorrhiza) and status (obligately (OM), facultatively (FM) or non-mycorrhizal) offer valuable insight into plant belowground functionality. Here, we compile available plant mycorrhizal trait information and global occurrence data ( ∼ 100 million records) for 11,770 vascular plant species. Using a plant phylogenetic mega-tree and high-resolution climatic and edaphic data layers, we assess phylogenetic and environmental correlates of plant mycorrhizal traits. We find that plant mycorrhizal type is more phylogenetically conserved than plant mycorrhizal status, while environmental variables (both climatic and edaphic; notably soil texture) explain more variation in mycorrhizal status, especially FM. The previously underestimated role of environmental conditions has far-reaching implications for our understanding of ecosystem functioning under changing climatic and soil conditions.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Filogenia , Microbiologia do Solo , Plantas , Solo/química
4.
BMC Pulm Med ; 22(1): 114, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354459

RESUMO

BACKGROUND: Lung adenocarcinoma accounts for approximately 40% of all primary lung cancers; however, the mortality rates remain high. Successfully predicting progression and overall (OS) time will provide clinicians with more options to manage this disease. METHODS: We analyzed RNA sequencing data from 510 cases of lung adenocarcinoma from The Cancer Genome Atlas database using CIBERSORT, ImmuCellAI, and ESTIMATE algorithms. Through these data we constructed 6 immune subtypes and then compared the difference of OS, immune infiltration level and gene expression between these immune subtypes. Also, all the subtypes and immune cells infiltration level were used to evaluate the relationship with prognosis and we introduced lasso-cox method to constructe an immune-related prognosis model. Finally we validated this model in another independent cohort. RESULTS: The C3 immune subtype of lung adenocarcinoma exhibited longer survival, whereas the C1 subtype was associated with a higher mutation rate of MUC17 and FLG genes compared with other subtypes. A multifactorial correlation analysis revealed that immune cell infiltration was closely associated with overall survival. Using data from 510 cases, we constructed a nomogram prediction model composed of clinicopathologic factors and immune signatures. This model produced a C-index of 0.73 and achieved a C-index of 0.844 using a validation set. CONCLUSIONS: Through this study we constructed an immune related prognosis model to instruct lung adenocarcinoma's OS and validated its value in another independent cohost. These results will be useful in guiding treatment for lung adenocarcinoma based on tumor immune profiles.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Estudos de Coortes , Humanos , Neoplasias Pulmonares/genética , Nomogramas , Prognóstico
5.
Addict Biol ; 26(6): e13053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33987939

RESUMO

The progressively increased motivation for cocaine during abstinence is closely associated with the dysfunction of dopamine (DA) system. As DA receptors also dynamically regulate L-type calcium channels (LTCCs), in this study we examined how DA receptors (D1R or D2R) and LTCCs (Cav 1.2 or Cav 1.3) exert their influences on cocaine-seeking in a tree shrew (Tupaia belangeri chinensis) model. First, we demonstrated the 'incubation' effect by showing tree shrews exhibited a significantly higher seeking behaviour on withdrawal day (WD) 45 than on WD1. Then, we confirmed that longer abstinence period induced higher D1R expression in the nucleus accumbens (NAc). Next, we showed that LTCCs in the NAc participated in drug seeking. Moreover, Cav 1.2 expression in the NAc was increased on WD45, and disruption of the Cav 1.2 inhibited drug seeking. Finally, we found that D1R antagonist blocked the increase of Cav 1.2 on drug-seeking test. Collectively, these findings suggest that D1R-mediated upregulation of Cav 1.2 is involved in the incubation of cocaine craving.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Corpo Estriado/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Receptores de Dopamina D1/metabolismo , Animais , Masculino , Motivação , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Autoadministração , Fatores de Tempo , Tupaiidae , Regulação para Cima
6.
Cell Immunol ; 348: 104039, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007223

RESUMO

Cancer immunotherapy, due to its high anti-tumor efficacy, has attracted considerable attention globally from experts in various fields. However, immunotherapy could be severely toxic; not all patients may respond, thus requiring combination therapy. Therefore, a reasonable selection strategy for early treatment is urgently needed. It is vital to capture the dynamic, heterogeneous, and complex tumor behavior considering the absence of ideal companion biomarkers. Since tumor immune response involves tumor cells, several other cell types, and molecules in the tumor microenvironment, detection is very complex and variable. However, molecular imaging technology, namely the non-invasive whole-body molecular imaging by positron emission tomography and single-photon emission computed tomography, has shown considerable promise in tumor detection and cancer immunotherapy response. Identification of potential novel imaging biomarkers will allow a personalized treatment plan for every patient. Future imaging strategies for these molecules used alone or in combination or continuously, might help stratify patients before or during the early stages of immunotherapy, and might address the immunotherapy challenges encountered by the oncologists.


Assuntos
Imunoterapia/métodos , Imagem Molecular/métodos , Imagem Molecular/tendências , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Humanos
7.
New Phytol ; 226(4): 1117-1128, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943225

RESUMO

The benefits of the arbuscular mycorrhizal (AM) symbiosis between plants and fungi are modulated by the functional characteristics of both partners. However, it is unknown to what extent functionally distinct groups of plants naturally associate with different AM fungi. We reanalysed 14 high-throughput sequencing data sets describing AM fungal communities associating with plant individuals (2427) belonging to 297 species. We examined how root-associating AM fungal communities varied between plants with different growth forms, photosynthetic pathways, CSR (competitor, stress-tolerator, ruderal) strategies, mycorrhizal statuses and N-fixing statuses. AM fungal community composition differed in relation to all studied plant functional groups. Grasses, C4 and nonruderal plants were characterised by high AM fungal alpha diversity, while C4 , ruderal and obligately mycorrhizal plants were characterised by high beta diversity. The phylogenetic diversity of AM fungi, a potential surrogate for functional diversity, was higher among forbs than other plant growth forms. Putatively ruderal (previously cultured) AM fungi were disproportionately associated with forbs and ruderal plants. There was phylogenetic correlation among AM fungi in the degree of association with different plant growth forms and photosynthetic pathways. Associated AM fungal communities constitute an important component of plant ecological strategies. Functionally different plants associate with distinct AM fungal communities, linking mycorrhizal associations with functional diversity in ecosystems.


Assuntos
Micobioma , Micorrizas , Ecossistema , Filogenia , Raízes de Plantas , Plantas , Microbiologia do Solo , Simbiose
8.
J Cell Physiol ; 234(9): 15342-15356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30697721

RESUMO

Promoting the antitumor effects of cell-based immunotherapy for clinical application remains a difficult challenge. Nocardia rubra cell-wall skeleton (N-CWS) is an immunotherapeutic agent for cancers that have been proven to possess the ability to activate immune response without showing toxicity. However, its effects on immune cells that are derived from tumor patients and cultured in vitro remain unclear. As expected, N-CWS can enhance the proliferation and viability of cytokine-induced killer (CIK) cells, dendritic cells (DCs), and natural killer (NK) cells. The maturation of DCs and specific cytotoxicity against NK cells and CIK cells were consistently promoted. The TUNEL-staining and the Annexin V/propidium iodide assay revealed that after treatment with N-CWS, the stimulated CIK/NK cells could induce DNA breaks in tumor cells. Furthermore, quantitative real-time polymerase chain reaction and western blot analysis showed upregulation of proapoptotic biomarkers (caspase-3 and caspase-9) and a downregulation of the antiapoptotic biomarker Bcl-2 in the tumor cells of the N-CWS-treated group, indicating that N-CWS could induce hepatocellular carcinoma cell apoptosis via CIK/NK cells. Finally, CIK/NK cells could notably suppress the invasion and migration of tumor cells in the presence of N-CWS. Our study provides evidence that N-CWS could significantly increase the growth of CIK cells, DCs, and NK cells, particularly due to its robust antitumor activities by inducing apoptosis, and attenuate the invasion and migration of tumor cells.

9.
J Basic Microbiol ; 59(6): 609-620, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980724

RESUMO

Revegetation is widely used to enhance degraded topsoil recovery with the enhancements of soil nutrient accumulation and soil structure stabilization. Arbuscular mycorrhizal fungi (AMF) are important for the allocation of carbon into the soil and the formation of soil aggregates. Thus, we hypothesized that AMF could construct more niches for other microbes during revegetation, making AMF keystone taxa of soil. Soil fungal and bacterial communities were investigated under a revegetation experiment and correlation networks between soil fungi and bacteria were constructed. Simultaneously, the plant growth level, soil properties and structure, and soil microbial carbon decomposition abilities were measured. The results revealed that AMF were the most central fungi at the phylum (degree = 3), class (degree = 11), and family (degree = 15) levels. The reads number of AMF were positively correlated with both fungal (R2 = 0.431, P < 0.001) and bacterial (R2 = 0.106, P = 0.044) richness. Higher colonization of AMF in roots and/or more AMF extraradical mycelium and spores in soil indicated a better plant growth, more stable soil aggregates, and a higher carbon decomposition ratio. Our results highlight that AMF are keystone taxa in revegetation, as they play significant roles in enhancing the recovery of the belowground microbiome diversity, soil structure stability, and nutrients cycling. The positive roles of AMF in revegetation support the application of AMF in ecosystem recovery.


Assuntos
Recuperação e Remediação Ambiental , Microbiota , Micorrizas/fisiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Solo/química , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Tibet
10.
J Basic Microbiol ; 59(10): 992-1003, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410872

RESUMO

Revegetation accelerates the recovery of degraded lands. Different microbial trophic groups underpin this acceleration from the aspects of soil structure stabilization, nutrient accumulation, and ecosystem functions. However, little is known about how revegetation influences the community and biodiversity of different soil microbial trophic groups. Here, six revegetation treatments with different plantings of plant species were established at an excavation pit in the Qinghai-Tibetan Plateau. Communities of plant, bacteria, and several key soil fungal groups were investigated after 12 years of revegetation. Plant and all microbial trophic group compositions were markedly influenced by revegetation treatments. Total fungal and pathogenic fungal compositions were not significantly predicted by any factor of plant and soil, but arbuscular mycorrhizal fungal composition could be mainly predicted by plant composition and plant P content. Bacterial composition was mainly determined by soil total N, organic carbon concentration, and moisture content; and saprotrophic fungal composition was mainly determined by soil organic carbon. Soil pH was the strongest factor to predict bacterial metabolic functions. Our findings highlight that even the differences of microbial compositions were because of different revegetation treatments, but each trophic microbial composition had different relations with plant and/or soil; especially, the bacterial community and metabolic functions and saprotrophic fungal community were more correlated with soil properties rather than plant community or characteristics per se.


Assuntos
Recuperação e Remediação Ambiental , Pradaria , Plantas/classificação , Microbiologia do Solo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/análise , Carbono/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Micorrizas/classificação , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Fosfatos/análise , Fosfatos/metabolismo , Plantas/química , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Tibet
13.
Nutrition ; 125: 112480, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38788511

RESUMO

The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.


Assuntos
Dieta Cetogênica , Dieta Cetogênica/métodos , Humanos , Redução de Peso , Gorduras na Dieta/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Dieta com Restrição de Carboidratos/métodos
14.
Crit Rev Oncol Hematol ; 200: 104403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838927

RESUMO

Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.


Assuntos
Transplante de Microbiota Fecal , Imunoterapia , Receptor de Morte Celular Programada 1 , Humanos , Transplante de Microbiota Fecal/métodos , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/terapia , Neoplasias/imunologia , Microbioma Gastrointestinal/imunologia , Resistencia a Medicamentos Antineoplásicos , Animais
15.
Int J Biol Macromol ; 262(Pt 2): 130044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340922

RESUMO

Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.


Assuntos
Vesículas Extracelulares , Neoplasias , Animais , Leite/química , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos , Cabras
16.
Front Cell Infect Microbiol ; 14: 1280636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585656

RESUMO

Vaginal microbiota transplantation (VMT) is a cutting-edge treatment modality that has the potential to revolutionize the management of vaginal disorders. The human vagina is a complex and dynamic ecosystem home to a diverse community of microorganisms. These microorganisms play a crucial role in maintaining the health and well-being of the female reproductive system. However, when the balance of this ecosystem is disrupted, it can lead to the development of various vaginal disorders. Conventional treatments, such as antibiotics and antifungal medications, can temporarily relieve the symptoms of vaginal disorders. However, they often fail to address the underlying cause of the problem, which is the disruption of the vaginal microbiota. In recent years, VMT has emerged as a promising therapeutic approach that aims to restore the balance of the vaginal ecosystem. Several studies have demonstrated the safety and efficacy of VMT in treating bacterial vaginosis, recurrent yeast infections, and other vaginal conditions. The procedure has also shown promising results in reducing the risk of sexually transmitted infections and preterm birth in pregnant women. However, more research is needed to establish optimal donor selection, preparation, and screening protocols, as well as long-term safety and efficacy. VMT offers a safe, effective, and minimally invasive treatment option for women with persistent vaginal problems. It could improve the quality of life for millions of women worldwide and become a standard treatment option shortly. With further research and development, it could potentially treat a wide range of other health problems beyond the scope of vaginal disorders.


Assuntos
Microbiota , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Humanos , Qualidade de Vida , Vagina/microbiologia , Força da Mão
17.
Chin Med J (Engl) ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118214

RESUMO

ABSTRACT: Bacterial outer membrane vesicles (OMVs) are diminutive vesicles naturally released by Gram-negative bacteria. These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment. Therapeutic medicines may be delivered via OMVs directly to the tumor sites, thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity. Furthermore, the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells, which makes them a desirable tool for immunotherapy. They can also be genetically modified to carry specific antigens, immunomodulatory compounds, and small interfering RNAs, enhancing the immune response to cancerous cells and silencing genes associated with disease progression. Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects. This review highlights the crucial role of bacterial OMVs in cancer, emphasizing their potential as vectors for novel cancer targeted therapies. As researchers delve deeper into the complexities of these vesicles and their interactions with tumors, there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.

18.
Sci Data ; 11(1): 283, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461162

RESUMO

High-resolution integration of large-scale and long-term anthropogenic nutrient discharge data is crucial for understanding the spatiotemporal evolution of pollution and identifying intervention points for pollution mitigation. Here, we establish the MEANS-ST1.0 dataset, which has a high spatiotemporal resolution and encompasses anthropogenic nutrient discharge data collected in China from 1980 to 2020. The dataset includes five components, namely, urban residential, rural residential, industrial, crop farming, and livestock farming, with a spatial resolution of 1 km and a temporal resolution of monthly. The data are available in three formats, namely, GeoTIFF, NetCDF and Excel, catering to GIS users, researchers and policymakers in various application scenarios, such as visualization and modelling. Additionally, rigorous quality control was performed on the dataset, and its reliability was confirmed through cross-scale validation and literature comparisons at the national and regional levels. These data offer valuable insights for further modelling the interactions between humans and the environment and the construction of a digital Earth.

19.
Water Res ; 250: 121049, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157599

RESUMO

Human activities have led to an alarming increase in pollution, resulting in widespread water contamination. A comprehensive understanding of the quantitative relationship between anthropogenic pollutant discharges and the escalating anthropogenic disturbances and environmental efforts is crucial for effective water quality management. Here we establish a Model for Estimating Anthropogenic pollutaNts diScharges (MEANS) and simulate the long-term dynamics of various types of anthropogenic discharges in China based on an unprecedented spatio-temporal dynamic parameter dataset. Our findings reveal that from 1980 to 2020, anthropogenic discharges exhibited an overall trend of initially increasing and subsequently decreasing, with the peak occurring around 2005. During this period, the dominant pollution sources in China shifted from urban to rural areas, thereby driving the transition of hotspot pollutants from nitrogen to phosphorus in the eastern regions. The most significant drivers of anthropogenic pollutant discharges gradually shifted from population size and dietary structure to wastewater treatment and agricultural factors. Furthermore, we observed that a significant portion of China's regions still exceed the safety thresholds for pollutant discharges, with excessive levels of total phosphorus (TP) being particularly severe. These findings highlight the need for flexible management strategies in the future to address specific pollution levels and hotspots in different regions. Our study underscores the importance of considering the complex interplay between anthropogenic disturbances, environmental efforts, and long-term anthropogenic pollutant discharges for effective water pollution control.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Saneamento , Qualidade da Água , China , Fósforo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Dieta
20.
Mech Ageing Dev ; 212: 111823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37192676

RESUMO

Aging shows itself not just at the cellular level, with shortened telomeres and cell cycle arrest, but also at the organ and organismal level, with diminished brainpower, dry eyes, intestinal inflammation, muscular atrophy, wrinkles, etc. When the gut microbiota, often called the "virtual organ of the host," fails to function normally, it can lead to a cascade of health problems including, but not limited to, inflammatory bowel disease, obesity, metabolic liver disease, type II diabetes, cardiovascular disease, cancer, and even neurological disorders. An effective strategy for restoring healthy gut bacteria is fecal microbiota transplantation (FMT). It can reverse the effects of aging on the digestive system, the brain, and the vision by transplanting the functional bacteria found in the excrement of healthy individuals into the gut tracts of patients. This paves the way for future research into using the microbiome as a therapeutic target for disorders associated with aging.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Doenças Metabólicas , Microbiota , Humanos , Adolescente , Transplante de Microbiota Fecal , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA