Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 80(2): 410-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095906

RESUMO

The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete ß-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete ß-strand pairs into complete amyloid ß-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full ß-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel ß-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies.


Assuntos
Algoritmos , Peptídeos beta-Amiloides/química , Príons/química , Dobramento de Proteína , Amiloide/química , Entropia , Proteínas Fúngicas/química , Proteínas de Filamentos Intermediários/química , Fatores de Terminação de Peptídeos/química , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química
2.
PLoS Comput Biol ; 5(3): e1000333, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19325876

RESUMO

Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator) in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s), there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid. BETASCAN is publicly accessible on the Web at http://betascan.csail.mit.edu.


Assuntos
Algoritmos , Peptídeos beta-Amiloides/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Simulação por Computador , Interpretação Estatística de Dados , Dados de Sequência Molecular
3.
PLoS Comput Biol ; 4(1): e10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18193941

RESUMO

Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins.


Assuntos
Algoritmos , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
4.
Proteins ; 63(4): 976-85, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16547930

RESUMO

The ability to predict structure from sequence is particularly important for toxins, virulence factors, allergens, cytokines, and other proteins of public health importance. Many such functions are represented in the parallel beta-helix and beta-trefoil families. A method using pairwise beta-strand interaction probabilities coupled with evolutionary information represented by sequence profiles is developed to tackle these problems for the beta-helix and beta-trefoil folds. The algorithm BetaWrapPro employs a "wrapping" component that may capture folding processes with an initiation stage followed by processive interaction of the sequence with the already-formed motifs. BetaWrapPro outperforms all previous motif recognition programs for these folds, recognizing the beta-helix with 100% sensitivity and 99.7% specificity and the beta-trefoil with 100% sensitivity and 92.5% specificity, in crossvalidation on a database of all nonredundant known positive and negative examples of these fold classes in the PDB. It additionally aligns 88% of residues for the beta-helices and 86% for the beta-trefoils accurately (within four residues of the exact position) to the structural template, which is then used with the side-chain packing program SCWRL to produce 3D structure predictions. One striking result has been the prediction of an unexpected parallel beta-helix structure for a pollen allergen, and its recent confirmation through solution of its structure. A Web server running BetaWrapPro is available and outputs putative PDB-style coordinates for sequences predicted to form the target folds.


Assuntos
Biologia Computacional/métodos , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Alinhamento de Sequência , Software
5.
J Comput Biol ; 12(6): 777-95, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16108716

RESUMO

A method is presented that uses beta-strand interactions at both the sequence and the atomic level, to predict beta-structural motifs of protein sequences. A program called Wrap-and- Pack implements this method and is shown to recognize beta-trefoils, an important class of globular beta-structures, in the Protein Data Bank with 92% specificity and 92.3% sensitivity in cross-validation. It is demonstrated that Wrap-and-Pack learns each of the ten known SCOP beta-trefoil families, when trained primarily on beta-structures that are not beta-trefoils, together with three-dimensional structures of known beta-trefoils from outside the family. Wrap-and-Pack also predicts many proteins of unknown structure to be beta-trefoils. The computational method used here may generalize to other beta-structures for which strand topology and profiles of residue accessibility are well conserved.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Proteínas/genética , Biologia Computacional , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência/estatística & dados numéricos , Software
6.
J Comput Biol ; 9(2): 261-76, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12015881

RESUMO

A method is presented that uses beta-strand interactions to predict the parallel right-handed beta-helix super-secondary structural motif in protein sequences. A program called BetaWrap implements this method and is shown to score known beta-helices above non-beta-helices in the Protein Data Bank in cross-validation. It is demonstrated that BetaWrap learns each of the seven known SCOP beta-helix families, when trained primarily on beta-structures that are not beta-helices, together with structural features of known beta-helices from outside the family. BetaWrap also predicts many bacterial proteins of unknown structure to be beta-helices; in particular, these proteins serve as virulence factors, adhesins, and toxins in bacterial pathogenesis and include cell surface proteins from Chlamydia and the intestinal bacterium Helicobacter pylori. The computational method used here may generalize to other beta-structures for which strand topology and profiles of residue accessibility are well conserved.


Assuntos
Proteínas/química , Proteínas/genética , Algoritmos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biologia Computacional , Bases de Dados de Proteínas , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína , Alinhamento de Sequência/estatística & dados numéricos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA