Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 25(7): 533-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25708401

RESUMO

Plant growth responses following colonization with different isolates of a single species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to detrimental, but the reasons for this high within-species diversity are currently unknown. To examine whether differences in growth and nutritional benefits are related to the phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 10 AM fungal morphospecies on the P and nitrogen (N) nutrition of Medicago sativa and the P allocation among different P pools was examined. Based on differences in the mycorrhizal growth response, high, medium, and low performance isolates were distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on P and N nutrition. High performance isolates increased plant biomass by more than 170 % and contributed substantially to both P and N nutrition, whereas the effect of medium performance isolates particularly on the N nutrition of the host was significantly lower. Roots colonized by high performance isolates were characterized by relatively low tissue concentrations of inorganic P and short-chain polyphosphates and a high ratio between long- to short-chain polyphosphates. The high performance isolates belonged to different morphospecies and genera, indicating that the ability to contribute to P and N nutrition is widespread within the Glomeromycota and that differences in symbiotic performance and P metabolism are not specific for individual fungal morphospecies.


Assuntos
Medicago sativa/microbiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Especificidade da Espécie
2.
New Phytol ; 203(2): 646-656, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24787049

RESUMO

Common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi in the soil simultaneously provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled are unknown. Using radioactive and stable isotopes, we followed the transport of phosphorus (P) and nitrogen (N) in the CMNs of two fungal species to plants that differed in their carbon (C) source strength, and correlated the transport to the expression of mycorrhiza-inducible plant P (MtPt4) and ammonium (1723.m00046) transporters in mycorrhizal roots. AM fungi discriminated between host plants that shared a CMN and preferentially allocated nutrients to high-quality (nonshaded) hosts. However, the fungus also supplied low-quality (shaded) hosts with nutrients and maintained a high colonization rate in these plants. Fungal P transport was correlated to the expression of MtPt4. The expression of the putative ammonium transporter 1723.m00046 was dependent on the fungal nutrient supply and was induced when the CMN had access to N. Biological market theory has emerged as a tool with which the strategic investment of competing partners in trading networks can be studied. Our work demonstrates how fungal partners are able to retain bargaining power, despite being obligately dependent on their hosts.


Assuntos
Carbono/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Commun Integr Biol ; 9(1): e1107684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066184

RESUMO

Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

4.
Plant Signal Behav ; 7(11): 1509-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22990447

RESUMO

The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis.


Assuntos
Micorrizas/fisiologia , Transporte Biológico/fisiologia , Carbono/metabolismo , Nitrogênio/metabolismo , Simbiose/fisiologia
5.
Science ; 333(6044): 880-2, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21836016

RESUMO

Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing nutrient transfer only to those roots providing more carbohydrates. On the basis of these observations we conclude that, unlike many other mutualisms, the symbiont cannot be "enslaved." Rather, the mutualism is evolutionarily stable because control is bidirectional, and partners offering the best rate of exchange are rewarded.


Assuntos
Glomeromycota/fisiologia , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose , Evolução Biológica , Metabolismo dos Carboidratos , Carbono/metabolismo , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Fósforo/metabolismo , Raízes de Plantas/fisiologia , RNA Fúngico/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA