Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 565(7741): 587-593, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700872

RESUMO

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

2.
Geophys Res Lett ; 49(11): e2021GL097366, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859850

RESUMO

Oxidation of isoprene by nitrate radicals (NO3) or by hydroxyl radicals (OH) under high NOx conditions forms a substantial amount of organonitrates (ONs). ONs impact NOx concentrations and consequently ozone formation while also contributing to secondary organic aerosol. Here we show that the ONs with the chemical formula C4H7NO5 are a significant fraction of isoprene-derived ONs, based on chamber experiments and ambient measurements from different sites around the globe. From chamber experiments we found that C4H7NO5 isomers contribute 5%-17% of all measured ONs formed during nighttime and constitute more than 40% of the measured ONs after further daytime oxidation. In ambient measurements C4H7NO5 isomers usually dominate both nighttime and daytime, implying a long residence time compared to C5 ONs which are removed more rapidly. We propose potential nighttime sources and secondary formation pathways, and test them using a box model with an updated isoprene oxidation scheme.

3.
Chem Rev ; 119(6): 3472-3509, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30799608

RESUMO

Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.


Assuntos
Oxigênio/química , Peróxidos/química , Compostos Orgânicos Voláteis/química , Aerossóis , Atmosfera/química , Oxirredução
4.
Environ Sci Technol ; 55(23): 15658-15671, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807606

RESUMO

The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, ß-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.


Assuntos
Poluentes Atmosféricos , Nitratos , Aerossóis , Poluentes Atmosféricos/análise , Monoterpenos Bicíclicos , Humanos
5.
Nature ; 506(7489): 476-9, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572423

RESUMO

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Assuntos
Aerossóis/química , Modelos Químicos , Compostos Orgânicos Voláteis/química , Aerossóis/análise , Aerossóis/metabolismo , Atmosfera/química , Monoterpenos Bicíclicos , Clima , Ecossistema , Finlândia , Gases/análise , Gases/química , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Árvores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Volatilização
6.
Environ Sci Technol ; 50(12): 6334-42, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27219077

RESUMO

The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.


Assuntos
Aerossóis , Poluentes Atmosféricos/química , Monoterpenos/química , Nitratos/química , Ozônio/química , Tamanho da Partícula , Compostos Orgânicos Voláteis/química
7.
Nature ; 461(7262): 381-4, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19759617

RESUMO

It has been suggested that volatile organic compounds (VOCs) are involved in organic aerosol formation, which in turn affects radiative forcing and climate. The most abundant VOCs emitted by terrestrial vegetation are isoprene and its derivatives, such as monoterpenes and sesquiterpenes. New particle formation in boreal regions is related to monoterpene emissions and causes an estimated negative radiative forcing of about -0.2 to -0.9 W m(-2). The annual variation in aerosol growth rates during particle nucleation events correlates with the seasonality of monoterpene emissions of the local vegetation, with a maximum during summer. The frequency of nucleation events peaks, however, in spring and autumn. Here we present evidence from simulation experiments conducted in a plant chamber that isoprene can significantly inhibit new particle formation. The process leading to the observed decrease in particle number concentration is linked to the high reactivity of isoprene with the hydroxyl radical (OH). The suppression is stronger with higher concentrations of isoprene, but with little dependence on the specific VOC mixture emitted by trees. A parameterization of the observed suppression factor as a function of isoprene concentration suggests that the number of new particles produced depends on the OH concentration and VOCs involved in the production of new particles undergo three to four steps of oxidation by OH. Our measurements simulate conditions that are typical for forested regions and may explain the observed seasonality in the frequency of aerosol nucleation events, with a lower number of nucleation events during summer compared to autumn and spring. Biogenic emissions of isoprene are controlled by temperature and light, and if the relative isoprene abundance of biogenic VOC emissions increases in response to climate change or land use change, the new particle formation potential may decrease, thus damping the aerosol negative radiative forcing effect.


Assuntos
Butadienos/farmacologia , Hemiterpenos/metabolismo , Hemiterpenos/farmacologia , Pentanos/farmacologia , Árvores/efeitos dos fármacos , Árvores/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aerossóis/análise , Aerossóis/metabolismo , Ar/análise , Betula/efeitos dos fármacos , Betula/metabolismo , Butadienos/análise , Carbono/análise , Ambiente Controlado , Fagus/efeitos dos fármacos , Fagus/metabolismo , Hemiterpenos/análise , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Luz , Monoterpenos/metabolismo , Monoterpenos/farmacologia , Oxirredução , Pentanos/análise , Picea/efeitos dos fármacos , Picea/metabolismo , Estações do Ano , Temperatura , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
8.
Proc Natl Acad Sci U S A ; 109(34): 13503-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869714

RESUMO

The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.


Assuntos
Aerossóis/química , Compostos Orgânicos/química , Atmosfera , Radicais Livres , Radical Hidroxila , Espectrometria de Massas/métodos , Modelos Químicos , Oxigênio/química , Ozônio , Reprodutibilidade dos Testes , Solventes/química , Raios Ultravioleta
9.
J Am Chem Soc ; 136(44): 15596-606, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25283472

RESUMO

The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.

10.
Environ Sci Technol ; 48(11): 6168-76, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810838

RESUMO

Formation and evolution of secondary organic aerosols (SOA) from biogenic VOCs influences the Earth's radiative balance. We have examined the photo-oxidation and aging of boreal terpene mixtures in the SAPHIR simulation chamber. Changes in thermal properties and chemical composition, deduced from mass spectrometric measurements, were providing information on the aging of biogenic SOA produced under ambient solar conditions. Effects of precursor mixture, concentration, and photochemical oxidation levels (OH exposure) were evaluated. OH exposure was found to be the major driver in the long term photochemical transformations, i.e., reaction times of several hours up to days, of SOA and its thermal properties, whereas the initial concentrations and terpenoid mixtures had only minor influence. The volatility distributions were parametrized using a sigmoidal function to determine TVFR0.5 (the temperature yielding a 50% particle volume fraction remaining) and the steepness of the volatility distribution. TVFR0.5 increased by 0.3±0.1% (ca. 1 K), while the steepness increased by 0.9±0.3% per hour of 1×10(6) cm(-3) OH exposure. Thus, aging reduces volatility and increases homogeneity of the vapor pressure distribution, presumably because highly volatile fractions become increasingly susceptible to gas phase oxidation, while less volatile fractions are less reactive with gas phase OH.


Assuntos
Poluentes Atmosféricos/química , Terpenos/química , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Gases/química , Oxirredução , Processos Fotoquímicos , Terpenos/análise , Volatilização
11.
Sci Adv ; 8(42): eabp8702, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269820

RESUMO

Secondary organic aerosol (SOA), formed by oxidation of volatile organic compounds, substantially influence air quality and climate. Highly oxygenated organic molecules (HOMs), particularly those formed from biogenic monoterpenes, contribute a large fraction of SOA. During daytime, hydroxyl radicals initiate monoterpene oxidation, mainly by hydroxyl addition to monoterpene double bonds. Naturally, related HOM formation mechanisms should be induced by that reaction route, too. However, for α-pinene, the most abundant atmospheric monoterpene, we find a previously unidentified competitive pathway under atmospherically relevant conditions: HOM formation is predominately induced via hydrogen abstraction by hydroxyl radicals, a generally minor reaction pathway. We show by observations and theoretical calculations that hydrogen abstraction followed by formation and rearrangement of alkoxy radicals is a prerequisite for fast daytime HOM formation. Our analysis provides an accurate mechanism and yield, demonstrating that minor reaction pathways can become major, here for SOA formation and growth and related impacts on air quality and climate.

12.
ACS Earth Space Chem ; 5(4): 785-800, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33889791

RESUMO

Alkyl nitrate (AN) and secondary organic aerosol (SOA) from the reaction of nitrate radicals (NO3) with isoprene were observed in the Simulation of Atmospheric PHotochemistry In a large Reaction (SAPHIR) chamber during the NO3Isop campaign in August 2018. Based on 15 day-long experiments under various reaction conditions, we conclude that the reaction has a nominally unity molar AN yield (observed range 90 ± 40%) and an SOA mass yield of OA + organic nitrate aerosol of 13-15% (with ∼50 µg m-3 inorganic seed aerosol and 2-5 µg m-3 total organic aerosol). Isoprene (5-25 ppb) and oxidant (typically ∼100 ppb O3 and 5-25 ppb NO2) concentrations and aerosol composition (inorganic and organic coating) were varied while remaining close to ambient conditions, producing similar AN and SOA yields under all regimes. We observe the formation of dinitrates upon oxidation of the second double bond only once the isoprene precursor is fully consumed. We determine the bulk partitioning coefficient for ANs (K p ∼ 10-3 m3 µg-1), indicating an average volatility corresponding to a C5 hydroxy hydroperoxy nitrate.

13.
J Phys Chem A ; 113(17): 5082-90, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19385680

RESUMO

Reactive uptake coefficients for loss of N(2)O(5) to micron-size aerosols containing oxalic malonic, succinic, and glutaric acids, and mixtures with ammonium hydrogen sulfate and ammonium sulfate, are presented. The uptake measurements were made using two different systems: atmospheric pressure laminar flow tube reactor (Cambridge) and the Large Indoor Aerosol Chamber at Forschungszentrum Juelich. Generally good agreement is observed for the data recorded using the two techniques. Measured uptake coefficients lie in the range 5 x 10(-4)-3 x 10(-2), dependent on relative humidity, on particle phase, and on particle composition. Uptake to solid particles is generally slow, with observed uptake coefficients less than 1 x 10(-3), while uptake to liquid particles is around an order of magnitude more efficient. These results are rationalized using a numerical model employing explicit treatment of both transport and chemistry. Our results indicate a modest effect of the dicarboxylic acids on uptake and confirm the strong effect of particle phase, liquid water content, and particulate nitrate concentrations.


Assuntos
Ácidos Dicarboxílicos/química , Nitratos/química , Óxidos de Nitrogênio/química , Aerossóis/química , Tamanho da Partícula , Sulfatos/química
14.
Sci Rep ; 6: 35038, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27733773

RESUMO

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

15.
Science ; 348(6241): 1326, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089508

RESUMO

Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2·H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.

16.
Science ; 344(6181): 292-6, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24744373

RESUMO

Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear. Here, we present a set of observations of HONO and its budget made onboard a Zeppelin airship. In a sunlit layer separated from Earth's surface processes by temperature inversion, we found high HONO concentrations providing evidence for a strong gas-phase source of HONO consuming nitrogen oxides and potentially hydrogen oxide radicals. The observed properties of this production process suggest that the generally assumed impact of HONO on the abundance of OH in the troposphere is substantially overestimated.

17.
Science ; 339(6122): 943-6, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23430652

RESUMO

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

18.
Phys Chem Chem Phys ; 11(13): 2323-8, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19305907

RESUMO

The absolute rate coefficient for the reaction of alpha-pinene with ozone was determined in the temperature range between 243 K and 303 K at atmospheric pressure. In total, 30 experiments were performed in the large (85 m3) temperature-controlled simulation chamber AIDA, where the concentrations of the reactants ozone and alpha-pinene were measured directly. An Arrhenius expression for the alpha-pinene + ozone reaction was derived with a pre-exponential factor of (1.4 +/- 0.4) x 10(-15) cm3 s(-1) and a temperature coefficient of (833 +/- 86) K. This rate coefficient is in good agreement (-5%) with the current IUPAC (IUPAC 2007) recommendation at 298 K. The IUPAC recommendation is significantly larger (+27%), around 243 K where the recommended values were extrapolated from higher temperatures. This finding is relevant for tropical regions where strong updrafts can rapidly transport reactive hydrocarbons like alpha-pinene from the boundary layer into the cold regions of the free troposphere.


Assuntos
Monoterpenos/química , Ozônio/química , Temperatura , Absorção , Monoterpenos Bicíclicos , Cinética , Espectrometria de Massas , Prótons , Clima Tropical , Raios Ultravioleta
19.
Environ Sci Technol ; 43(21): 8166-72, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924939

RESUMO

Secondary organic aerosol (SOA) is known to form from a variety of anthropogenic and biogenic precursors. Current estimates of global SOA production vary over 2 orders of magnitude. Since no direct measurement technique for SOA exists, quantifying SOA remains a challenge for atmospheric studies. The identification of biogenic SOA (BSOA) based on mass spectral signatures offers the possibility to derive source information of organic aerosol (OA) with high time resolution. Here we present data from simulation experiments. The BSOA from tree emissions was characterized with an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Collection efficiencies were close to 1, and effective densities of the BSOA were found to be 1.3 +/- 0.1 g/cm(3). The mass spectra of SOA from different trees were found to be highly similar. The average BSOA mass spectrum from tree emissions is compared to a BSOA component spectrum extracted from field data. It is shown that overall the spectra agree well and that the mass spectral features of BSOA are distinctively different from those of OA components related to fresh fossil fuel and biomass combustions. The simulation chamber mass spectrum may potentially be useful for the identification and interpretation of biogenic SOA components in ambient data sets.


Assuntos
Aerossóis/análise , Atmosfera/química , Espectrometria de Massas , Compostos Orgânicos/análise , Árvores/química , Tamanho da Partícula , Fatores de Tempo , Volatilização
20.
Annu Rev Phys Chem ; 58: 321-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17090227

RESUMO

The oxidation of organics in aerosol particles affects the physical properties of aerosols through a process known as aging. Atmospheric particles compose a huge set of specific organic compounds, most of which have not been identified in field measurements. Laboratory experiments inevitably address model systems of reduced complexity to isolate critical chemical phenomena, but growing evidence suggests that composition effects may play a central role in the atmospheric aging of organic particles. In this review we seek to address the connections between recent laboratory studies and recent field campaigns addressing the aging of organic aerosols. We review laboratory studies on the uptake of oxidants, the evolution of particle-water interactions, and the evolution of particle density with aging. Finally, we review field data addressing condensed-phase lifetimes of organic tracers. These data suggest that although matrix effects identified in the laboratory have taken a step toward reconciling laboratory-field disagreements, further work is needed to understand the actual aging rates of organics in ambient particles.


Assuntos
Aerossóis/química , Compostos Orgânicos/química , Projetos de Pesquisa , Oxirredução , Ozônio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA