Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2218522120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068243

RESUMO

Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Nitrilas/farmacologia , Descoberta de Drogas , Castração , Resistencia a Medicamentos Antineoplásicos , Receptores Androgênicos/metabolismo
2.
Front Oncol ; 11: 675215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094978

RESUMO

While functional studies of long noncoding RNAs (lncRNAs) have mostly focused on how they influence disease diagnosis and prognosis, the pharmacogenomic relevance of lncRNAs remains largely unknown. Here, we test the hypothesis that the expression of a lncRNA, grow arrest-specific 5 (GAS5) can be a biomarker for docetaxel response in castration resistant prostate cancer (CRPC) using both prostate cancer (PCa) cell lines and CRPC patient datasets. Our results suggest that lower GAS5 expression is associated with docetaxel resistance in both PCa cell lines and CRPC patients. Further experiments also suggest that GAS5 is downregulated in docetaxel resistant CRPC cell lines, which reinforces its potential as a biomarker for docetaxel response. To examine the underlying biological mechanisms, we transiently knockdown GAS5 expression in PCa cell lines and then subject the cells to docetaxel treatment overtime. We did not observe a decrease in docetaxel induced growth inhibition or apoptosis in the siRNA treated cells. The findings suggest that there is no direct causal relationship between change in GAS5 expression and docetaxel response. Subsequently, we explored the indirect regulation among GAS5, ATP binding cassette subfamily B member 1 (ABCB1), and docetaxel sensitivity. We showed that transient knockdown GAS5 did not lead to significant changes in ABCB1 expression. Therefore, we rule out the hypothesis that GAS5 directly down regulate ABCB1 that lead to docetaxel sensitivity. In conclusion, our work suggests that GAS5 can serve as a predictive biomarker for docetaxel response in CRPC; however, the exact mechanism behind the observed correlation remain to be elucidated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA