Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 280: 120347, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648120

RESUMO

Humans and other animals can learn and exploit repeating patterns that occur within their environments. These learned patterns can be used to form expectations about future sensory events. Several influential predictive coding models have been proposed to explain how learned expectations influence the activity of stimulus-selective neurons in the visual system. These models specify reductions in neural response measures when expectations are fulfilled (termed expectation suppression) and increases following surprising sensory events. However, there is currently scant evidence for expectation suppression in the visual system when confounding factors are taken into account. Effects of surprise have been observed in blood oxygen level dependent (BOLD) signals, but not when using electrophysiological measures. To provide a strong test for expectation suppression and surprise effects we performed a predictive cueing experiment while recording electroencephalographic (EEG) data. Participants (n=48) learned cue-face associations during a training session and were then exposed to these cue-face pairs in a subsequent experiment. Using univariate analyses of face-evoked event-related potentials (ERPs) we did not observe any differences across expected (90% probability), neutral (50%) and surprising (10%) face conditions. Across these comparisons, Bayes factors consistently favoured the null hypothesis throughout the time-course of the stimulus-evoked response. When using multivariate pattern analysis we did not observe above-chance classification of expected and surprising face-evoked ERPs. By contrast, we found robust within- and across-trial stimulus repetition effects. Our findings do not support predictive coding-based accounts that specify reduced prediction error signalling when perceptual expectations are fulfilled. They instead highlight the utility of other types of predictive processing models that describe expectation-related phenomena in the visual system without recourse to prediction error signalling.


Assuntos
Sinais (Psicologia) , Motivação , Animais , Humanos , Teorema de Bayes , Potenciais Evocados , Aprendizagem
2.
Neuroimage ; 259: 119447, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798251

RESUMO

Every decision we make is accompanied by an estimate of the probability that our decision is accurate or appropriate. This probability estimate is termed our degree of decision confidence. Recent work has uncovered event-related potential (ERP) correlates of confidence both during decision formation and after a decision has been made. However, the interpretation of these findings is complicated by methodological issues related to ERP amplitude measurement that are prevalent across existing studies. To more accurately characterise the neural correlates of confidence, we presented participants with a difficult perceptual decision task that elicited a broad range of confidence ratings. We identified a frontal ERP component within an onset prior to the behavioural response, which exhibited more positive-going amplitudes in trials with higher confidence ratings. This frontal effect also biased measures of the centro-parietal positivity (CPP) component at parietal electrodes via volume conduction. Amplitudes of the error positivity (Pe) component that followed each decision were negatively associated with confidence for trials with decision errors, but not for trials with correct decisions, with Bayes factors providing moderate evidence for the null in the latter case. We provide evidence for both pre- and post-decisional neural correlates of decision confidence that are observed in trials with correct and erroneous decisions, respectively. Our findings suggest that certainty in having made a correct response is associated with frontal activity during decision formation, whereas certainty in having committed an error is instead associated with the post-decisional Pe component. These findings also highlight the possibility that some previously reported associations between decision confidence and CPP/Pe component amplitudes may have been a consequence of ERP amplitude measurement-related confounds. Re-analysis of existing datasets may be useful to test this hypothesis more directly.


Assuntos
Tomada de Decisões , Eletroencefalografia , Teorema de Bayes , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Humanos , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA