Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2220616120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549260

RESUMO

Climate change, especially in the form of precipitation and temperature changes, can alter the transformation and delivery of nitrogen on the land surface and to aquatic systems, impacting the trophic states of downstream water bodies. While the expected impacts of changes in precipitation have been explored, a quantitative understanding of the impact of temperature on nitrogen loading is lacking at landscape scales. Here, using several decades of nitrogen loading observations, we quantify how individual and combined future changes in precipitation and temperature will affect riverine nitrogen loading. We find that, contrary to recent decades, rising temperatures are likely to offset or even reverse previously reported impacts of future increases in total and extreme precipitation on nitrogen runoff across the majority of the contiguous United States. These findings highlight the multifaceted impacts of climate change on the global nitrogen cycle.

2.
Environ Sci Technol ; 58(27): 11988-11997, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875444

RESUMO

Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.


Assuntos
Rios , Rios/química , Oceanos e Mares , Monitoramento Ambiental , Espectrometria de Massas , Compostos Orgânicos/análise
3.
Environ Sci Technol ; 57(13): 5464-5473, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947486

RESUMO

Identifying drivers of the molecular composition of dissolved organic matter (DOM) is essential to understand the global carbon cycle, but an unambiguous interpretation of observed patterns is challenging due to the presence of confounding factors that affect the DOM composition. Here, we show, by combining ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, that the DOM molecular composition varies considerably among 43 lakes in East Antarctica that are isolated from terrestrial inputs and human influence. The DOM composition in these lakes is primarily driven by differences in the degree of photodegradation, sulfurization, and pH. Remarkable molecular beta-diversity of DOM was found that rivals the dissimilarity between DOM of rivers and the deep ocean, which was driven by environmental dissimilarity rather than the spatial distance. Our results emphasize that the extensive molecular diversity of DOM can arise even in one of the most pristine and organic matter source-limited environments on Earth, but at the same time the DOM composition is predictable by environmental variables and the lakes' ecological history.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Humanos , Lagos/química , Regiões Antárticas , Espectrometria de Massas , Rios/química
4.
Environ Sci Technol ; 57(46): 17900-17909, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37079797

RESUMO

Dissolved organic matter (DOM) is a complex mixture of molecules that constitutes one of the largest reservoirs of organic matter on Earth. While stable carbon isotope values (δ13C) provide valuable insights into DOM transformations from land to ocean, it remains unclear how individual molecules respond to changes in DOM properties such as δ13C. To address this, we employed Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize the molecular composition of DOM in 510 samples from the China Coastal Environments, with 320 samples having δ13C measurements. Utilizing a machine learning model based on 5199 molecular formulas, we predicted δ13C values with a mean absolute error (MAE) of 0.30‰ on the training data set, surpassing traditional linear regression methods (MAE 0.85‰). Our findings suggest that degradation processes, microbial activities, and primary production regulate DOM from rivers to the ocean continuum. Additionally, the machine learning model accurately predicted δ13C values in samples without known δ13C values and in other published data sets, reflecting the δ13C trend along the land to ocean continuum. This study demonstrates the potential of machine learning to capture the complex relationships between DOM composition and bulk parameters, particularly with larger learning data sets and increasing molecular research in the future.


Assuntos
Carbono , Matéria Orgânica Dissolvida , Isótopos de Carbono , Espectrometria de Massas/métodos , Rios/química
5.
Anal Chem ; 92(3): 2558-2565, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887024

RESUMO

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is one of the state-of-the-art methods to analyze complex natural organic mixtures. The precision of detected masses is crucial for molecular formula attribution. Random errors can be reduced by averaging multiple measurements of the same mass, but because of limited availability of ultrahigh-resolution mass spectrometers, most studies cannot afford analyzing each sample multiple times. Here we show that random errors can be eliminated also by averaging mass spectral data from independent environmental samples. By averaging the spectra of 30 samples analyzed on our 15 T instrument we reach a mass precision comparable to a single spectrum of a 21 T instrument. We also show that it is possible to accurately and reproducibly determine isotope ratios with FT-ICR-MS. Intensity ratios of isotopologues were improved to a degree that measured deviations were within the range of natural isotope fractionation effects. In analogy to δ13C in environmental studies, we propose Δ13C as an analytical measure for isotope ratio deviances instead of widely employed C deviances. In conclusion, here we present a simple tool, extensible to Orbitrap-based mass spectrometers, for postdetection data processing that significantly improves mass accuracy and the precision of intensity ratios of isotopologues at no extra cost.

6.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298576

RESUMO

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

7.
Nat Commun ; 15(1): 4658, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821957

RESUMO

The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4-43% higher growth rates, 14-17% higher survival rates and 4-7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.


Assuntos
Biodiversidade , Florestas , Folhas de Planta , Árvores , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Ecossistema , Solo/química , Clima
8.
Microorganisms ; 9(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34442799

RESUMO

Microbial communities and dissolved organic matter (DOM) are intrinsically linked within the global carbon cycle. Demonstrating this link on a molecular level is hampered by the complexity of both counterparts. We have now investigated this connection within intertidal beach sediments, characterized by a runnel-ridge system and subterranean groundwater discharge. Using datasets generated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and Ilumina-sequencing of 16S rRNA genes, we predicted metabolic functions and determined links between bacterial communities and DOM composition. Four bacterial clusters were defined, reflecting differences within the community compositions. Those were attributed to distinct areas, depths, or metabolic niches. Cluster I was found throughout all surface sediments, probably involved in algal-polymer degradation. In ridge and low water line samples, cluster III became prominent. Associated porewaters indicated an influence of terrestrial DOM and the release of aromatic compounds from reactive iron oxides. Cluster IV showed the highest seasonality and was associated with species previously reported from a subsurface bloom. Interestingly, Cluster II harbored several members of the candidate phyla radiation (CPR) and was related to highly degraded DOM. This may be one of the first geochemical proofs for the role of candidate phyla in the degradation of highly refractory DOM.

9.
Ambio ; 49(1): 107-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30852778

RESUMO

Stock enhancement activities provide an opportunity to examine density-dependent suppression of population biomass which is a fundamental issue for resource management and design of no-take-zones. We document 'catch-and-wait' fisheries enhancement where all but the largest lobsters are thrown back, recapturing them later after they have grown to a larger size. The residency, rate of return, and potential negative density-dependent effects of this activity are described using a combination of tagging and v-notching and by relating spatial growth patterns to population density defined with Catch Per Unit Effort. The results successfully demonstrated the concept of catch-and-wait practices. However, a density-dependent suppression of growth (in body size) was observed in male lobsters. This demonstrates a mechanism to explain differences in lobster sizes previously observed across EU fishing grounds with different stock densities. This negative effect of density could also affect individual biomass production in marine reserve or no-take zones.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Biomassa , Peixes , Masculino , Densidade Demográfica
10.
Nat Ecol Evol ; 4(11): 1502-1509, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807945

RESUMO

To understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4,600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that 'safe-operating spaces' are unlikely to be quantifiable.


Assuntos
Mudança Climática , Ecossistema , Metanálise como Assunto
11.
Mar Pollut Bull ; 146: 155-172, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31426143

RESUMO

Being globally and locally prevalent, beach litter has been monitored at 29 sites along the German North Sea coastline. This study offers an exploratory analysis of data from 1991 to 2016. Schleswig-Holstein exhibited lower mean litter pollution levels than Lower Saxony, possibly because the locations in Lower Saxony are situated along the main coastal current, whereas the North Frisian Islands act as a barrier for the mainland sites in Schleswig-Holstein. Locations close to the Elbe estuary had significantly larger amounts of debris, likely receiving litter from marine and riverine sources. No clear overall pattern in litter abundance or composition could be detected. Significant quantitative similarities between debris types were inconsistent. The effect of wind, tides, and exposure appeared to be marginal. Recurring data inconsistencies, gaps, and outliers were partly attributed to human error. This could be reduced through hypothesis-driven monitoring with a simpler litter classification and continuous data checking.


Assuntos
Monitoramento Ambiental/métodos , Poluição da Água/análise , Praias , Estuários , Humanos , Mar do Norte , Resíduos/análise , Vento
12.
Sci Data ; 6(1): 7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914648

RESUMO

The availability of growth data in N. norvegicus is important for management purposes due to a lack of aging criteria and the commercial importance of fisheries in this species. Growth varies as a function of stock density, hence comparisons of growth rates between stocks at known density is particularly valuable. Growth is also related to starting size in males, making raw data on size-specific growth rates more valuable. Internally injected passive tags allowed us to track the growth of male and female individuals over one or two years. The spatial position of tagged recaptures was recorded to measure site fidelity of tagged releases. A total of 3300 pots were fished and their spatial positions were recorded to enable Catch Per Unit Effort calculations. Similarly, spatially geo-referenced v-notching and notched recovery enables spatially gridded densities to be calculated. Finally, acoustic mapping was carried out both on and off the fishing ground and was ground-truthed with sedimentology from grabs at 22 stations. These data are useful for fisheries and macroecological studies.


Assuntos
Pesqueiros , Nephropidae , Animais , Feminino , Masculino , Biologia Marinha , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA