Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
New Phytol ; 239(2): 705-719, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683446

RESUMO

Plants often protect themselves from their own bioactive defense metabolites by storing them in less active forms. Consequently, plants also need systems allowing correct spatiotemporal reactivation of such metabolites, for instance under pathogen or herbivore attack. Via co-expression analysis with public transcriptomes, we determined that the model legume Medicago truncatula has evolved a two-component system composed of a ß-glucosidase, denominated G1, and triterpene saponins, which are physically separated from each other in intact cells. G1 expression is root-specific, stress-inducible, and coregulated with that of the genes encoding the triterpene saponin biosynthetic enzymes. However, the G1 protein is stored in the nucleolus and is released and united with its typically vacuolar-stored substrates only upon tissue damage, partly mediated by the surfactant action of the saponins themselves. Subsequently, enzymatic removal of carbohydrate groups from the saponins creates a pool of metabolites with an increased broad-spectrum antimicrobial activity. The evolution of this defense system benefited from both the intrinsic condensation abilities of the enzyme and the bioactivity properties of its substrates. We dub this two-component system the saponin bomb, in analogy with the mustard oil and cyanide bombs, commonly used to describe the renowned ß-glucosidase-dependent defense systems for glucosinolates and cyanogenic glucosides.


Assuntos
Medicago truncatula , Saponinas , Triterpenos , Triterpenos/metabolismo , Medicago truncatula/genética , Saponinas/química , beta-Glucosidase/metabolismo
2.
Plant Cell ; 32(6): 2020-2042, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303662

RESUMO

Plants produce a vast array of defense compounds to protect themselves from pathogen attack or herbivore predation. Saponins are a specific class of defense compounds comprising bioactive glycosides with a steroidal or triterpenoid aglycone backbone. The model legume Medicago truncatula synthesizes two types of saponins, hemolytic saponins and nonhemolytic soyasaponins, which accumulate as specific blends in different plant organs. Here, we report the identification of the seed-specific transcription factor TRITERPENE SAPONIN ACTIVATION REGULATOR3 (TSAR3), which controls hemolytic saponin biosynthesis in developing M. truncatula seeds. Analysis of genes that are coexpressed with TSAR3 in transcriptome data sets from developing M. truncatula seeds led to the identification of CYP88A13, a cytochrome P450 that catalyzes the C-16α hydroxylation of medicagenic acid toward zanhic acid, the final oxidation step of the hemolytic saponin biosynthesis branch in M. truncatula In addition, two uridine diphosphate glycosyltransferases, UGT73F18 and UGT73F19, which glucosylate hemolytic sapogenins at the C-3 position, were identified. The genes encoding the identified biosynthetic enzymes are present in clusters of duplicated genes in the M. truncatula genome. This appears to be a common theme among saponin biosynthesis genes, especially glycosyltransferases, and may be the driving force of the metabolic evolution of saponins.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Triterpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética
3.
Ecol Lett ; 25(4): 839-850, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006639

RESUMO

The pollination syndrome hypothesis predicts that plants pollinated by the same pollinator group bear convergent combinations of specific floral functional traits. Nevertheless, some studies have shown that these combinations predict pollinators with relatively low accuracy. This discrepancy may be caused by changes in the importance of specific floral traits for different pollinator groups and under different environmental conditions. To explore this, we studied pollination systems and floral traits along an elevational gradient on Mount Cameroon during wet and dry seasons. Using Random Forest (Machine Learning) models, allowing the ranking of traits by their relative importance, we demonstrated that some floral traits are more important than others for pollinators. However, the distribution and importance of traits vary under different environmental conditions. Our results imply the need to improve our trait-based understanding of plant-pollinator interactions to better inform the debate surrounding the pollination syndrome hypothesis.


Assuntos
Flores , Polinização , Fenótipo , Plantas , Estações do Ano
4.
Plant Cell ; 30(9): 2197-2213, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099383

RESUMO

Programmed cell death in plants occurs both during stress responses and as an integral part of regular plant development. Despite the undisputed importance of developmentally controlled cell death processes for plant growth and reproduction, we are only beginning to understand the underlying molecular genetic regulation. Exploiting the Arabidopsis thaliana root cap as a cell death model system, we identified two NAC transcription factors, the little-characterized ANAC087 and the leaf-senescence regulator ANAC046, as being sufficient to activate the expression of cell death-associated genes and to induce ectopic programmed cell death. In the root cap, these transcription factors are involved in the regulation of distinct aspects of programmed cell death. ANAC087 orchestrates postmortem chromatin degradation in the lateral root cap via the nuclease BFN1. In addition, both ANAC087 and ANAC046 redundantly control the onset of cell death execution in the columella root cap during and after its shedding from the root tip. Besides identifying two regulators of developmental programmed cell death, our analyses reveal the existence of an actively controlled cell death program in Arabidopsis columella root cap cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética
5.
Acta Neurochir (Wien) ; 163(4): 885-893, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515124

RESUMO

BACKGROUND: At this juncture, there is no consensus in the literature for the use and the safety of pin-type head holders in cranial procedures. METHODS: The present analysis of the bone response to the fixation of the instrument provides data to understand its impact on the entire skull as well as associated complications. An experimental study was conducted on fresh-frozen human specimens to analyze the puncture hole due to the fixation of each single pin of the pin-type head holder. Cone-beam CT images were acquired to measure the diameter of the puncture hole caused by the instrument according to several parameters: the pin angle, the clamping force, and different neurosurgical approaches most clinically used. RESULTS: The deepest hole, 2.67 ± 0.27 mm, was recorded for a 35° angle and a clamping force of 270 N at the middle fossa approach. The shallowest hole was 0.62 ± 0.22 mm for the 43° angle with a pinning force of 180 N in the pterional approach. The pterional approach had a significantly different effect on the depth of the puncture hole compared with the middle fossa craniotomy for 270 N pinning at 35° angle. The puncture hole measured with the 43° angle and 180 N force in prone position is significantly different from the other approaches with the same force. CONCLUSIONS: These results could lead to recommendations about the use of the head holder depending on the patient's history and cranial thickness to reduce complications associated with the pin-type head holder during clinical applications.


Assuntos
Craniotomia/métodos , Posicionamento do Paciente/métodos , Crânio/cirurgia , Movimentos da Cabeça , Humanos , Masculino , Decúbito Ventral
6.
Small ; 14(34): e1801599, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30035854

RESUMO

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2 O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on-off resistance ratios reach 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology.

7.
Int J Phytoremediation ; 20(9): 939-946, 2018 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-29873538

RESUMO

High soil P concentrations hinder ecological restoration of biological communities typical for nutrient-poor soils. Phosphorus mining, i.e., growing crops with fertilization other than P, might reduce soil P concentrations. However, crop species have different P-uptake rates and can affect subsequent P removal in crop rotation, both of which may also vary with soil P concentration. In a pot experiment with three soil-P-levels (High-P: 125-155 mg POlsen/kg; Mid-P: 51-70 mg POlsen/kg; Low-P: 6-21 mg POlsen/kg), we measured how much P was removed by five crop species (buckwheat, maize, sunflower, flax, and triticale). Total P removal decreased with soil-P-level and depended upon crop identity. Buckwheat and maize removed most P from High-P and Mid-P soils and triticale removed less P than buckwheat, maize, and sunflower at every soil-P-level. The difference in P removal between crops was, however, almost absent in Low-P soils. Absolute and relative P removal with seeds depended upon crop species and, for maize and triticale, also upon soil-P-level. None of the previously grown crop species significantly affected P removal by the follow-up crop (perennial ryegrass). We can conclude that for maximizing P removal, buckwheat or maize could be grown.


Assuntos
Fósforo/análise , Solo , Biodegradação Ambiental , Produtos Agrícolas , Mineração
8.
Nano Lett ; 17(4): 2568-2574, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28267346

RESUMO

The mechanism by which light is emitted from plasmonic metals such as gold and silver has been contentious, particularly at photon energies below direct interband transitions. Using nanoscale plasmonic cavities, blue-pumped light emission is found to directly track dark-field scattering on individual nanoconstructs. By exploiting slow atomic-scale restructuring of the nanocavity facets to spectrally tune the dominant gap plasmons, this correlation can be measured from 600 to 900 nm in gold, silver, and mixed constructs ranging from spherical to cube nanoparticles-on-mirror. We show that prompt electronic Raman scattering is responsible and confirm that "photoluminescence", which implies phase and energy relaxation, is not the right description. Our model suggests how to maximize light emission from metals.

9.
Plant J ; 88(3): 476-489, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27377668

RESUMO

Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.


Assuntos
Medicago truncatula/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Agrobacterium/genética , Medicago truncatula/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Simbiose/genética , Simbiose/fisiologia
10.
Plant Physiol ; 170(1): 194-210, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589673

RESUMO

Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/biossíntese , Sítios de Ligação , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/genética , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Medicago truncatula/genética , Ácido Mevalônico/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Saponinas/genética , Saponinas/metabolismo , Análise de Sequência de RNA , Nicotiana/genética , Triterpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA