Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Space Sci Rev ; 220(6): 62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176178

RESUMO

As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years. ANGSA constitutes the first preliminary examination phase of a lunar "sample return mission" in over 50 years. It also mimics that same phase of an Artemis surface exploration mission, its design included placing samples within the context of local and regional geology through new orbital observations collected since Apollo and additional new "boots-on-the-ground" observations, data synthesis, and interpretations provided by Apollo 17 astronaut Harrison Schmitt. ANGSA used new curation techniques to prepare, document, and allocate these new lunar samples, developed new tools to open and extract gases from their containers, and applied new analytical instrumentation previously unavailable during the Apollo Program to reveal new information about these samples. Most of the 90 scientists, engineers, and curators involved in this mission were not alive during the Apollo Program, and it had been 30 years since the last Apollo core sample was processed in the Apollo curation facility at NASA JSC. There are many firsts associated with ANGSA that have direct relevance to Artemis. ANGSA is the first to open a core sample previously sealed on the surface of the Moon, the first to extract and analyze lunar gases collected in situ, the first to examine a core that penetrated a lunar landslide deposit, and the first to process pristine Apollo samples in a glovebox at -20 °C. All the ANGSA activities have helped to prepare the Artemis generation for what is to come. The timing of this program, the composition of the team, and the preservation of unopened Apollo samples facilitated this generational handoff from Apollo to Artemis that sets up Artemis and the lunar sample science community for additional successes.

2.
Geochim Cosmochim Acta ; 201: 320-330, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29151614

RESUMO

It is inferred that magnesian non-porphyritic chondrules in the CB (Bencubbin-type) carbonaceous chondrites formed in an impact generated plume of gas and melt at 4562.49 ± 0.21 Ma (Bollard et al., 2015) and could be suitable for the absolute age normalization of relative chronometers. Here xenon isotopic compositions of neutron irradiated chondrules from the CB chondrites Gujba and Hammadah al Hamra (HH) 237 have been analyzed in an attempt to determine closure time of their I-Xe isotope systematics. One of the HH 237 chondrules, #1, yielded a well-defined I-Xe isochron that corresponds to a closure time of 0.29 ± 0.16 Ma after the Shallowater aubrite standard. Release profiles and diffusion properties of radiogenic 129*Xe and 128*Xe, extracted from this chondrule by step-wise pyrolysis, indicate presence of two iodine host phases with distinct activation energies of 73 and 120 kcal/mol. In spite of the activation energy differences, the I-Xe isotope systematics of these two phases closed simultaneously, suggesting rapid heating and cooling (possibly quenching) of the CB chondrules. The release profiles of U-fission Xe and I-derived Xe correlate in the high temperature host phase supporting simultaneous closure of 129I-129Xe and 207Pb-206Pb systematics. The absolute I-Xe age of Shallowater standard is derived from the observed correlation between I-Xe and Pb-Pb ages in a number of samples. It is re-evaluated here using Pb-Pb ages adjusted for an updated 238U/235U ratio of 137.794 and meteorite specific U-isotope ratios. With the addition of the new data for HH 237 chondrule #1, the re-evaluated absolute I-Xe age of Shallowater is 4562.4 ± 0.2 Ma. The absolute I-Xe age of the HH 237 chondrule #1 is 4562.1 ± 0.3 Ma, in good agreement with U-corrected Pb-Pb ages of the Gujba chondrules (Bollard et al., 2015) and HH 237 silicates (Krot et al., 2005). All I-Xe data used here, and in previous estimates of the absolute age of Shallowater, are calculated using 15.7 ± 0.6 Ma value for 129I half-life. The slopes of I-Xe - Pb-Pb correlation lines plotted for different sets of samples for Shallowater normalization are always ≤1. Assuming uranium half-life values are correct; this restricts the half-life of 129I to ≤15.7 Ma.

3.
Phys Rev C ; 93(4)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29177205

RESUMO

Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.

4.
Phys Rev Lett ; 93(18): 182302, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15525157

RESUMO

Using selective laser extraction technique combined with sensitive ion-counting mass spectrometry, we have analyzed the isotopic structure of fission noble gases in U-free La-Ce-Sr-Ca aluminous hydroxy phosphate associated with the 2 billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce, and Sr, we discovered high (up to 0.03 cm(3) STP/g) concentrations of fission Xe and Kr, the largest ever observed in any natural material. The specific isotopic structure of xenon in this mineral defines a cycling operation for the reactor with 30-min active pulses separated by 2.5 h dormant periods. Thus, nature not only created conditions for self-sustained nuclear chain reactions, but also provided clues on how to retain nuclear wastes, including fission Xe and Kr, and prevent uncontrolled runaway chain reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA