Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2208593119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279462

RESUMO

Supramolecular self-assemblies of hydrophilic macromolecules functionalized with hydrophobic, structure-directing components have long been used for drug delivery. In these systems, loading of poorly soluble compounds is typically achieved through physical encapsulation during or after formation of the supramolecular assembly, resulting in low encapsulation efficiencies and limited control over release kinetics, which are predominately governed by diffusion and carrier degradation. To overcome these limitations, amphiphilic prodrugs that leverage a hydrophobic drug as both the therapeutic and structure-directing component can be used to create supramolecular materials with higher loading and controlled-release kinetics using biodegradable or enzymatically cleavable linkers. Here, we report the design, synthesis, and characterization of a library of supramolecular polymer prodrugs based on poly(ethylene glycol) (PEG) and the proregenerative drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA). Structure-property relationships were elucidated through experimental characterization of prodrug behavior in both the wet and dry states using scattering techniques and electron microscopy and corroborated by coarse-grained modeling. Molecular architecture and the hydrophobic-to-hydrophilic ratio of PEG-DPCA conjugates strongly influenced their physical state in water, ranging from fully soluble to supramolecular spherical assemblies and nanofibers. Molecular design and supramolecular structure, in turn, were shown to dramatically alter hydrolytic and enzymatic release and cellular transport of DPCA. In addition to potentially expanding therapeutic options for DPCA through control of supramolecular assemblies, the design principles elaborated here may inform the development of other supramolecular prodrugs based on hydrophobic small-molecule compounds.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Preparações de Ação Retardada , Polietilenoglicóis/química , Água , Ácidos Carboxílicos
2.
Magn Reson Med ; 92(2): 792-806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651648

RESUMO

PURPOSE: Gene therapy using adeno-associated virus (AAV) vector-mediated gene delivery has undergone substantial growth in recent years with promising results in both preclinical and clinical studies, as well as emerging regulatory approval. However, the inability to quantify the efficacy of gene therapy from cellular delivery of gene-editing technology to specific functional outcomes is an obstacle for efficient development of gene therapy treatments. Building on prior works that used the CEST reporter gene lysine rich protein, we hypothesized that AAV viral capsids may generate endogenous CEST contrast from an abundance of surface lysine residues. METHODS: NMR experiments were performed on isolated solutions of AAV serotypes 1-9 on a Bruker 800-MHz vertical scanner. In vitro experiments were performed for testing of CEST-NMR contrast of AAV2 capsids under varying pH, density, biological transduction stage, and across multiple serotypes and mixed biological media. Reverse transcriptase-polymerase chain reaction was used to quantify virus concentration. Subsequent experiments at 7 T optimized CEST saturation schemes for AAV contrast detection and detected AAV2 particles encapsulated in a biocompatible hydrogel administered in the hind limb of mice. RESULTS: CEST-NMR experiments revealed CEST contrast up to 52% for AAV2 viral capsids between 0.6 and 0.8 ppm. CEST contrast generated by AAV2 demonstrated high levels of CEST contrast across a variety of chemical environments, concentrations, and saturation schemes. AAV2 CEST contrast displayed significant positive correlations with capsid density (R2 > 0.99, p < 0.001), pH (R2 = 0.97, p = 0.01), and viral titer per cell count (R2 = 0.92, p < 0.001). Transition to a preclinical field strength yielded up to 11.8% CEST contrast following optimization of saturation parameters. In vivo detection revealed statistically significant molecular contrast between viral and empty hydrogels using both mean values (4.67 ± 0.75% AAV2 vs. 3.47 ± 0.87% empty hydrogel, p = 0.02) and quantile analysis. CONCLUSION: AAV2 viral capsids exhibit strong capacity as an endogenous CEST contrast agent and can potentially be used for monitoring and evaluation of AAV vector-mediated gene therapy protocols.


Assuntos
Capsídeo , Dependovirus , Imageamento por Ressonância Magnética , Dependovirus/genética , Animais , Capsídeo/química , Camundongos , Imageamento por Ressonância Magnética/métodos , Edição de Genes/métodos , Espectroscopia de Ressonância Magnética/métodos , Terapia Genética/métodos , Vetores Genéticos , Humanos , Meios de Contraste/química
3.
J Am Chem Soc ; 145(39): 21527-21537, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733607

RESUMO

Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.

4.
Small ; 18(15): e2200060, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229462

RESUMO

Macrophages (Mφs) are characterized by remarkable plasticity, an essential component of chronic inflammation. Thus, an appropriate and timely transition from proinflammatory (M1) to anti-inflammatory (M2) Mφs during wound healing is vital to promoting resolution of acute inflammation and enhancing tissue repair. Herein, exosomes derived from M2-Mφs (M2-Exos), which contain putative key regulators driving Mφ polarization, are used as local microenvironmental cues to induce reprogramming of M1-Mφs toward M2-Mφs for effective wound management. As an injectable controlled release depot for exosomes, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels (Exogels) are designed and employed for encapsulating M2-Exos to maximize their therapeutic effects in cutaneous wound healing. The degradation time of the hydrogels is adjustable from 6 days or up to 27 days by controlling the crosslinking density and tightness. The localization of M2-Exos leads to a successful local transition from M1-Mφs to M2-Mφs within the lesion for more than 6 days, followed by enhanced therapeutic effects including rapid wound closure and increased healing quality in an animal model for cutaneous wound healing. Collectively, the hydrolytically degradable PEG hydrogel-based exosome delivery system may serve as a potential tool in regulating local polarization state of Mφs, which is crucial for tissue homeostasis and wound repair.


Assuntos
Exossomos , MicroRNAs , Animais , Materiais Biocompatíveis/metabolismo , Preparações de Ação Retardada , Exossomos/metabolismo , Hidrogéis , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Cicatrização/fisiologia
5.
Chem Soc Rev ; 50(7): 4432-4483, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595004

RESUMO

Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.


Assuntos
Pesquisa Biomédica , Nanotecnologia , Fenóis/química , Tamanho da Partícula , Fenóis/síntese química
6.
Fetal Diagn Ther ; 49(11-12): 518-527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36634637

RESUMO

INTRODUCTION: The benefits of fetal surgery are impaired by the high incidence of iatrogenic preterm prelabor rupture of the fetal membranes (iPPROM), for which chorioamniotic separation has been suggested as a potential initiator. Despite the urgent need to prevent iPPROM by sealing the fetoscopic puncture site after intervention, no approach has been clinically translated. METHODS: A mussel-inspired biomimetic glue was tested in an ovine fetal membrane (FM) defect model. The gelation time of mussel glue (MG) was first optimized to make it technically compatible with fetal surgery. Then, the biomaterial was loaded in polytetrafluoroethylene-coated nitinol umbrella-shaped receptors and applied on ovine FM defects (N = 10) created with a 10 French trocar. Its sealing performance and tissue response were analyzed 10 days after implantation by amniotic fluid (AF) leakage and histological methods. RESULTS: All ewes and fetuses recovered well after the surgery, and 100% ewe survival and 91% fetal survival were observed at explantation. All implants were tight at explantation, and no AF leakage was observed in any of them. Histological analysis revealed a mild tissue response to the implanted glue. CONCLUSION: MG showed promising properties for the sealing of FM defects and thereby the prevention of preterm birth. Studies to analyze the long-term tissue response to the sealant should be performed.


Assuntos
Ruptura Prematura de Membranas Fetais , Nascimento Prematuro , Gravidez , Animais , Ovinos , Recém-Nascido , Feminino , Humanos , Fetoscopia/efeitos adversos , Membranas Extraembrionárias/patologia , Ruptura Prematura de Membranas Fetais/etiologia , Feto/patologia
7.
FASEB J ; 34(10): 13726-13740, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812255

RESUMO

The hypoxia-inducible factor 1α (HIF-1α) is critically involved in tissue regeneration. Hence, the pharmacological prevention of HIF-1α degradation by prolyl hydroxylase (PHD) under normoxic conditions is emerging as a promising option in regenerative medicine. Using a mouse model of ligature-induced periodontitis and resolution, we tested the ability of an injectable hydrogel-formulated PHD inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA/hydrogel), to promote regeneration of alveolar bone lost owing to experimental periodontitis. Mice injected subcutaneously with 1,4-DPCA/hydrogel at the onset of periodontitis resolution displayed significantly increased gingival HIF-1α protein levels and bone regeneration, as compared to mice treated with vehicle control. The 1,4-DPCA/hydrogel-induced increase in bone regeneration was associated with elevated expression of osteogenic genes, decreased expression of pro-inflammatory cytokine genes, and increased abundance of FOXP3+ T regulatory (Treg) cells in the periodontal tissue. The enhancing effect of 1,4-DPCA/hydrogel on Treg cell accumulation and bone regeneration was reversed by AMD3100, an antagonist of the chemokine receptor CXCR4 that mediates Treg cell recruitment. In conclusion, the administration of 1,4-DPCA/hydrogel at the onset of periodontitis resolution promotes CXCR4-dependent accumulation of Treg cells and alveolar bone regeneration, suggesting a novel approach for regaining bone lost due to periodontitis.


Assuntos
Regeneração Óssea , Inibidores Enzimáticos/uso terapêutico , Hidrogéis/uso terapêutico , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Periodontite/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Fatores de Transcrição Forkhead/metabolismo , Gengiva/metabolismo , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Linfócitos T Reguladores/fisiologia
8.
Chemistry ; 26(26): 5789-5793, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32059067

RESUMO

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) "peptoids" are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide "click" coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a "volumetric" spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Peptoides/química , Antibacterianos/farmacologia , Incrustação Biológica
9.
Langmuir ; 36(41): 12309-12318, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970448

RESUMO

Polypeptoid-coated surfaces and many surface-grafted hydrophilic polymer brushes have been proven efficient in antifouling-the prevention of nonspecific biomolecular adsorption and cell attachment. Protein adsorption, in particular, is known to mediate subsequent cell-surface interactions. However, the detailed antifouling mechanism of polypeptoid and other polymer brush coatings at the molecular level is not well understood. Moreover, most adsorption studies focus only on measuring a single adsorbed mass value, and few techniques are capable of characterizing the hydrated in situ layer structure of either the antifouling coating or adsorbed proteins. In this study, interfacial assembly of polypeptoid brushes with different chain lengths has been investigated in situ using neutron reflection (NR). Consistent with past simulation results, NR revealed a common two-step structure for grafted polypeptoids consisting of a dense inner region that included a mussel adhesive-inspired oligopeptide for grafting polypeptoid chains and a highly hydrated upper region with very low polymer density (molecular brush). Protein adsorption was studied with human serum albumin (HSA) and fibrinogen (FIB), two common serum proteins of different sizes but similar isoelectric points (IEPs). In contrast to controls, we observed higher resistance by grafted polypeptoid against adsorption of the larger FIB, especially for longer chain lengths. Changing the pH to close to the IEPs of the proteins, which generally promotes adsorption, also did not significantly affect the antifouling effect against FIB, which was corroborated by atomic force microscopy imaging. Moreover, NR enabled characterization of the in situ hydrated layer structures of the polypeptoids together with proteins adsorbed under selected conditions. While adsorption on bare SiO2 controls resulted in surface-induced protein denaturation, this was not observed on polypeptoids. Our current results therefore highlight the detailed in situ view that NR may provide for characterizing protein adsorption on polymer brushes as well as the excellent antifouling behavior of polypeptoids.


Assuntos
Incrustação Biológica , Bivalves , Adsorção , Animais , Incrustação Biológica/prevenção & controle , Humanos , Nêutrons , Dióxido de Silício , Propriedades de Superfície
10.
Angew Chem Int Ed Engl ; 59(38): 16616-16624, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32537907

RESUMO

The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino-catechol synergy, polymeric pressure-sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel-inspired lysine- and aromatic-rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM-assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.


Assuntos
Adesivos/química , Aminas/química , Catecóis/química , Estrutura Molecular , Pressão
11.
Eur Polym J ; 116: 134-143, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32831361

RESUMO

Medical adhesives that are strong, easy to apply and biocompatible are promising alternatives to sutures and staples in a large variety of surgical and clinical procedures. Despite progress in the development and regulatory approval of adhesives for use in the clinic, adhesion to wet tissue remains challenging. Marine organisms have evolved a diverse set of highly effective wet adhesive approaches that have inspired the design of new medical adhesives. Here we provide an overview of selected marine animals and their chemical and physical adhesion strategies, the state of clinical translation of adhesives inspired by these organisms, and target applications where marine-inspired adhesives can have a significant impact. We will focus on medical adhesive polymers inspired by mussels, sandcastle worms, and cephalopods, emphasize the history of bioinspired medical adhesives from the peer reviewed and patent literature, and explore future directions including overlooked sources of bioinspiration and materials that exploit multiple bioinspired strategies.

12.
Angew Chem Int Ed Engl ; 58(4): 1077-1082, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30485624

RESUMO

Inspired by the adhesive proteins of mussels, polydopamine (pDA) has emerged as one of the most widely employed materials for surface functionalization. Despite numerous attempts at characterization, little consensus has emerged regarding whether pDA is a covalent polymer or a noncovalent aggregate of low molecular weight species. Here, we employed single-molecule force spectroscopy (SMFS) to characterize pDA films. Retraction of a pDA-coated cantilever from an oxide surface shows the characteristic features of a polymer with contour lengths of up to 200 nm. pDA polymers are generally weakly bound to the surface through much of their contour length, with occasional "sticky" points. Our findings represent the first direct evidence for the polymeric nature of pDA and provide a foundation upon which to better understand and tailor its physicochemical properties.


Assuntos
Indóis/química , Polímeros/química , Titânio/química , Adesividade , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Peso Molecular , Análise Espectral , Propriedades de Superfície
13.
Angew Chem Int Ed Engl ; 58(35): 12271-12279, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31276607

RESUMO

A synthetic strategy to incorporate catechol functional groups into benzoxazine thermoset monomers was developed, leading to a family of bioinspired small-molecule resins and main-chain polybenzoxazines derived from biologically available phenols. Lap-shear adhesive testing revealed a polybenzoxazine derivative with greater than 5 times improved shear strength on aluminum substrates compared to a widely studied commercial benzoxazine resin. Derivative synthesis identified the catechol moiety as an important design feature in the adhesive performance and curing behavior of this bioinspired thermoset. Favorable mechanical properties comparable to commercial resin were maintained, and glass transition temperature and char yield under nitrogen were improved. Blending of monomers with bioinspired main-chain polybenzoxazine derivatives provided formulations with enhanced shear adhesive strengths up to 16 MPa, while alloying with commercial core-shell particle-toughened epoxy resins led to shear strengths exceeding 20 MPa. These results highlight the utility of bioinspired design and the use of biomolecules in the preparation of high-performance thermoset resins and adhesives with potential utility in transportation and aerospace industries and applications in advanced composites synthesis.

14.
Nat Mater ; 14(12): 1210-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26322715

RESUMO

In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.


Assuntos
Metais/química , Polímeros/química , Elasticidade , Hidrogéis/química , Viscosidade
15.
Langmuir ; 32(32): 8050-60, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27452793

RESUMO

Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions.


Assuntos
Polifenóis/química , Pirogalol/química , Titânio/química , Propriedades de Superfície
17.
Connect Tissue Res ; 57(2): 113-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26631309

RESUMO

PURPOSE: The objectives of this study were to assess the cartilage boundary lubricating ability of (1) nonreduced (NR) disulfide-bonded proteoglycan 4 (PRG4) multimers versus PRG4 monomers and (2) NR versus reduced and alkylated (R/A) PRG4 monomers and to assess (3) the ability of NR PRG4 multimers versus monomers to adsorb to an articular cartilage surface. MATERIALS AND METHODS: PRG4 was separated into two preparations, PRG4 multimer enriched (PRG4Multi+) and PRG4 multimer deficient (PRG4Multi-), using size exclusion chromatography (SEC) and characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The cartilage boundary lubricating ability of PRG4Multi+ and PRG4Multi- was compared at a physiological concentration (450 µg/mL) and assessed over a range of concentrations (45, 150, and 450 µg/mL). R/A and NR PRG4Multi- were evaluated at 450 µg/mL. Immunohistochemistry with anti-PRG4 antibody 4D6 was performed to visualize the adsorption of PRG4 preparations to the surface of articular cartilage explants. RESULTS: Separation into enriched populations of PRG4Multi+ and PRG4Multi- was achieved using SEC and was confirmed by SDS-PAGE. PRG4Multi+ and PRG4Multi- both functioned as effective friction-reducing cartilage boundary lubricants at 450 µg/mL, with PRG4Multi+ being more effective than PRG4Multi-. PRG4Multi+ lubricated in a dose-dependent manner, however, PRG4Multi- did not. R/A PRG4Multi- lubricated similar to NR PRG4Multi-. PRG4-containing solutions showed 4D6 immunoreactivity at the articular surface; the immunoreactive intensity of PRG4Multi+ appeared to be similar to SF, whereas PRG4Multi- appeared to have less intensity. CONCLUSIONS: These results demonstrate that the intermolecular disulfide-bonded multimeric structure of PRG4 is important for its ability to adsorb to a cartilage surface and function as a boundary lubricant. These findings contribute to a greater understanding of the molecular basis of cartilage boundary lubrication of PRG4. Elucidating the PRG4 structure-lubrication function relationship will further contribute to the understanding of PRG4's role in diarthrodial joint homeostasis and disease.


Assuntos
Cartilagem Articular/metabolismo , Dissulfetos/metabolismo , Lubrificação , Multimerização Proteica , Proteoglicanas/química , Proteoglicanas/metabolismo , Adsorção , Animais , Bovinos , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Fricção , Imuno-Histoquímica , Cinética
18.
Nano Lett ; 15(12): 7927-32, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26599387

RESUMO

High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanoestruturas , Polímeros/química , Silício/química , Microscopia de Força Atômica
19.
Langmuir ; 31(12): 3612-20, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25760226

RESUMO

We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants.


Assuntos
Antioxidantes/química , Portadores de Fármacos/química , Nanopartículas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Poliestirenos/química , Taninos/química , Animais , Antioxidantes/farmacologia , Transporte Biológico , Portadores de Fármacos/metabolismo , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ferro/química , Camundongos , Células NIH 3T3 , Solubilidade , Taninos/farmacologia , Água/química
20.
Small ; 10(1): 169-178, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23847147

RESUMO

Illumination of noble metal nanoparticles at the plasmon resonance causes substantial heat generation, and the transient and highly localized temperature increases that result from this energy conversion can be exploited for photothermal therapy by plasmonically heating gold nanorods (NRs) bound to cell surfaces. Here, plasmonic heating is used for the first time to locally release silver from gold core/silver shell (Au@Ag) NRs targeted to bacterial cell walls. A novel biomimetic method of preparing Au@Ag core-shell NRs is employed, involving deposition of a thin organic polydopamine (PD) primer onto Au NR surfaces, followed by spontaneous electroless silver metallization, and conjugation of antibacterial antibodies and passivating polymers for targeting to gram-negative and gram-positive bacteria. Dramatic cytotoxicity of S. epidermidis and E. coli cells targeted with Au@Ag NRs is observed upon exposure to light as a result of the combined antibacterial effects of plasmonic heating and silver release. The antibacterial effect is much greater than with either plasmonic heating or silver alone, implying a strong therapeutic synergy between cell-targeted plasmonic heating and the associated silver release upon irradiation. The findings suggest a potential antibacterial use of Au@Ag NRs when coupled with light irradiation, which has not been previously described.


Assuntos
Antibacterianos/química , Nanotubos/química , Prata/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biomimética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA