Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620157

RESUMO

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Assuntos
Sono REM , Sono , Humanos , Impedância Elétrica , Sono/fisiologia , Sono REM/fisiologia , Encéfalo/fisiologia , Vigília/fisiologia , Hipocampo
2.
Mult Scler ; 29(1): 74-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000479

RESUMO

BACKGROUND: Progressive motor impairment anatomically associated with a "critical" lesion has been described in primary demyelinating disease. Most "critical" lesions occur within the spinal cord. OBJECTIVE: To describe the clinical and radiological features of "critical" lesions of the cervicomedullary junction (CMJ). METHODS: Observational study on people presenting with a CMJ lesion associated with primary demyelinating disease-related progressive motor impairment. Clinical data were extracted by chart review. Brain and spinal cord magnetic resonance images were reviewed to characterize the CMJ lesion and determine additional demyelination burden. RESULTS: Forty-one people were included: 29 (71%) had progression from onset and 12 (29%) had a relapse onset (secondary progressive) course. Most had progressive hemiparesis (21 (51%)) or progressive quadriparesis (15 (37%)) with a median Expanded Disability Status Scale (EDSS) of 5.5 (2.0-8.5) at last follow-up. No "critical" CMJ lesion enhanced; most were bilateral (25 (61%)). Brain magnetic resonance images were otherwise normal in 16 (39%) or with a restricted demyelination burden in 15 (37%). Cervical and thoracic cord MRIs were without additional lesions in 25 (61%) and 22/37 (59%), respectively. CONCLUSION: CMJ "critical" lesions can correlate with progressive motor impairment even with few or no additional magnetic resonance imaging (MRI) lesions. Lesion location is an important determinant of progressive motor impairment in demyelinating disease.


Assuntos
Doenças Desmielinizantes , Transtornos Motores , Esclerose Múltipla , Humanos , Progressão da Doença , Avaliação da Deficiência , Recidiva Local de Neoplasia/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia
3.
Mult Scler ; 27(5): 667-673, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32552535

RESUMO

BACKGROUND: Progressive motor impairment anatomically attributable to prominent, focally atrophic lateral column spinal cord lesions ("critical lesions") can be seen in multiple sclerosis (MS), for example, progressive hemiparetic MS. OBJECTIVE: The aim of this study was to investigate whether similar spinal cord lesions are more frequent in long-standing MS patients with secondary progressive motor impairment (secondary progressive MS (SPMS)) versus those maintaining a relapsing-remitting course (relapsing-remitting MS (RRMS)). METHODS: We retrospectively identified Olmsted County (MN, USA) residents on 31 December 2011 with (1) RRMS or SPMS for ⩾25 years, and (2) available brain and spine magnetic resonance imaging (MRI). A blinded neuroradiologist determined demyelinating lesion burden and presence of potential critical lesions (prominent focally atrophic spinal cord lateral column lesions). RESULTS: In total, 32 patients were included: RRMS, 18; SPMS, 14. Median (range) disease duration (34 (27-53) vs. 39 (29-47) years) and relapse number (4 (1-10) vs. 3 (1-15)) were similar. In comparison to RRMS, SPMS patients more commonly showed potential critical spinal cord lesions (8/18 (44%) vs. 14/14 (100%)), higher spinal cord (median (range) 4 (1-7) vs. 7.5 (3-12)), and brain infratentorial (median (range) 1 (0-12) vs. 2.5 (1-13)) lesion number; p < 0.05. By multivariate analysis, only the presence of potential critical lesions independently associated with motor progression (p = 0.02). CONCLUSION: Critical spinal cord lesions may be important contributors to motor progression in MS.


Assuntos
Transtornos Motores , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Estudos de Casos e Controles , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Estudos Retrospectivos , Medula Espinal
4.
Mult Scler ; 27(7): 1037-1045, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32812487

RESUMO

BACKGROUND: New inflammatory activity is of unclear frequency and clinical significance in progressive multiple sclerosis (MS); it is uncertain in patient cohorts with motor progression due to critical demyelinating lesions. OBJECTIVES: The aim of this study is to determine the likelihood of central nervous system (CNS) inflammatory activity, assessed by new clinical relapses or active magnetic resonance imaging (MRI) lesions, following onset of motor progression due to critical demyelinating lesions. METHODS: Patients with progressive upper motor neuron impairment for ⩾1 year attributable to critical demyelinating lesions with single CNS lesion (progressive solitary sclerosis (PSS)), 2 to 5 total CNS demyelinating lesions (progressive "pauci-sclerosis" (PPS)), or >5 CNS demyelinating lesions and progressive exclusively unilateral monoparesis or hemiparesis (PUHMS) were identified. Clinical data were reviewed for acute MS relapses, and subsequent MRI was reviewed for active T1-gadolinium-enhancing or T2-demyelinating lesions. RESULTS: None of the 91 patients (22 PSS, 40 PPS, 29 PUHMS) identified experienced clinical relapses over a median clinical follow-up of 93 months (range: 12-518 months). Nine patients (10%) developed active lesions over median 84 months radiologic follow-up (range: 12-518 months). Active lesions occurred in 24% PUHMS, 5% PSS, and 3% PPS cohorts. CONCLUSION: New inflammatory activity, defined by active lesions and clinical relapses following motor progression in patients with critical demyelinating lesions, is low. Disease-modifying therapies that reduce demyelinating relapses and active MRI lesions are of uncertain benefit in these cohorts.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Sistema Nervoso Central , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem
5.
Epilepsia ; 62(10): e158-e164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418083

RESUMO

There is a paucity of data to guide anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) with brain sensing. The clinical Medtronic Percept DBS device provides constrained brain sensing power within a frequency band (power-in-band [PIB]), recorded in 10-min averaged increments. Here, four patients with temporal lobe epilepsy were implanted with an investigational device providing full bandwidth chronic intracranial electroencephalogram (cEEG) from bilateral ANT and hippocampus (Hc). ANT PIB-based seizure detection was assessed. Detection parameters were cEEG PIB center frequency, bandwidth, and epoch duration. Performance was evaluated against epileptologist-confirmed Hc seizures, and assessed by area under the precision-recall curve (PR-AUC). Data included 99 days of cEEG, and 20, 278, 3, and 18 Hc seizures for Subjects 1-4. The best detector had 7-Hz center frequency, 5-Hz band width, and 10-s epoch duration (group PR-AUC = .90), with 75% sensitivity and .38 false alarms per day for Subject 1, and 100% and .0 for Subjects 3 and 4. Hc seizures in Subject 2 did not propagate to ANT. The relative change of ANT PIB was maximal ipsilateral to seizure onset for all detected seizures. Chronic ANT and Hc recordings provide direct guidance for ANT DBS with brain sensing.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia , Núcleos Anteriores do Tálamo/fisiologia , Epilepsia/terapia , Hipocampo/diagnóstico por imagem , Humanos , Convulsões/diagnóstico , Tálamo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33372052

RESUMO

OBJECTIVE: To determine the frequency and characteristics of brainstem or cerebellar involvement in myelin-oligodendrocyte-glycoprotein-antibody-associated-disorder (MOGAD) versus aquaporin-4-IgG-seropositive-neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD) and multiple sclerosis (MS). METHODS: In this observational study, we retrospectively identified 185 Mayo Clinic MOGAD patients with: (1) characteristic MOGAD phenotype, (2) MOG-IgG seropositivity by live cell-based assay and (3) MRI lesion(s) of brainstem, cerebellum or both. We compared the symptomatic attacks to AQP4-IgG-NMOSD (n=30) and MS (n=30). RESULTS: Brainstem or cerebellar involvement occurred in 62/185 (34%) MOGAD patients of which 39/62 (63%) were symptomatic. Ataxia (45%) and diplopia (26%) were common manifestations. The median age in years (range) in MOGAD of 24 (2-65) was younger than MS at 36 (16-65; p=0.046) and AQP4-IgG-NMOSD at 45 (6-72; p=0.006). Isolated attacks involving the brainstem, cerebellum or both were less frequent in MOGAD (9/39 (23%)) than MS (22/30 (73%); p<0.001) but not significantly different from AQP4-IgG-NMOSD (14/30 (47%); p=0.07). Diffuse middle cerebellar peduncle MRI-lesions favoured MOGAD (17/37 (46%)) over MS (3/30 (10%); p=0.001) and AQP4-IgG-NMOSD (3/30 (10%); p=0.001). Diffuse medulla, pons or midbrain MRI lesions occasionally occurred in MOGAD and AQP4-IgG-NMOSD but never in MS. Cerebrospinal fluid (CSF) oligoclonal bands were rare in MOGAD (5/30 (17%)) and AQP4-IgG-NMOSD (2/22 (9%); p=0.68) but common in MS (18/22 (82%); p<0.001). Disability at nadir or recovery did not differ between the groups. CONCLUSION: Involvement of the brainstem, cerebellum or both is common in MOGAD but usually occurs as a component of a multifocal central nervous system attack rather than in isolation. We identified clinical, CSF and MRI attributes that can help discriminate MOGAD from AQP4-IgG-NMOSD and MS.

7.
Neurosurg Focus ; 48(4): E15, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32234995

RESUMO

OBJECTIVE: Generalized-onset seizures are usually conceptualized as engaging bilaterally distributed networks with no clear focus. However, the authors previously reported a case series demonstrating that in some patients with generalized-onset seizures, focal seizure onset could be discovered after corpus callosotomy. The corpus callosum is considered to be a major pathway for seizure generalization in this group of patients. The authors hypothesized that, in patients with generalized-onset seizures, the structure of the corpus callosum could be different between patients who have lateralized seizures and those who have nonlateralized seizures after corpus callosotomy. The authors aimed to evaluate the structural difference through statistical analysis of diffusion tensor imaging (DTI) scalars between these two groups of patients. METHODS: Thirty-two patients diagnosed with generalized-onset motor seizures and without an MRI lesion were included in this study. Among them, 16 patients developed lateralized epileptic activities after corpus callosotomy, and the remaining 16 patients continued to have nonlateralized seizures after corpus callosotomy. Presurgical DTI studies were acquired to quantify the structural integrity of the corpus callosum. RESULTS: The DTI analysis showed significant reduction of fractional anisotropy (FA) and increase in radial diffusivity (RD) in the body of the corpus callosum in the lateralized group compared with the nonlateralized group. CONCLUSIONS: The authors' findings indicate the existence of different configurations of bilateral epileptic networks in generalized epilepsy. Generalized seizures with focal onset relying on rapid spread through the corpus callosum might cause more structural damage related to demyelination in the corpus callosum, showing reduced FA and increased RD. This study suggests that presurgical DTI analysis of the corpus callosum might predict the seizure lateralization after corpus callosotomy.


Assuntos
Corpo Caloso/cirurgia , Epilepsia/cirurgia , Convulsões/cirurgia , Adolescente , Adulto , Criança , Imagem de Tensor de Difusão/métodos , Epilepsia Generalizada/patologia , Epilepsia Generalizada/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Psicocirurgia/métodos , Adulto Jovem
8.
Transpl Infect Dis ; 20(3): e12879, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29512846

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare, yet typically fatal complication of allogeneic stem cell transplantation. It is caused by reactivation of the John Cunningham (JC) virus in an immunocompromised host. This report describes an unfortunate case of PML in a recipient of an allogeneic stem cell transplant for acute myelogenous leukemia. The JC virus was undetectable in the patient's cerebrospinal fluid by polymerase chain reaction (PCR); however, a positive diagnosis was made after a brain biopsy. This and other published cases demonstrate that recipients of allogeneic stem cells can develop PML. Moreover, early diagnosis of the disease is often difficult and, as demonstrated in this case, screening with PCR does not appear to have strong diagnostic significance. With no effective treatment presently available, restoration of immune function is the only intervention that can affect prognosis. Further prospective studies are needed to understand the pathophysiology and treatment of this disease.


Assuntos
Encéfalo/virologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Evolução Fatal , Feminino , Humanos , Hospedeiro Imunocomprometido , Vírus JC/genética , Leucemia Mieloide Aguda/complicações , Leucoencefalopatia Multifocal Progressiva/líquido cefalorraquidiano , Leucoencefalopatia Multifocal Progressiva/virologia , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
9.
Emerg Radiol ; 25(2): 215-218, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397464

RESUMO

Retinal detachment with subsequent silicone oil retinopexy is not uncommon. A known complication of silicone retinopexy is intraventricular migration of the intraocular silicone oil. While the oil itself does not result in direct pathology, misdiagnosis may lead to an unnecessary diagnostic workup and possibly predispose the patient to surgery intervention. Silicone oil typically appears hyperdense on computer tomography (CT) and hyperintense on T1-weighted magnetic resonance (MR). These imaging findings may mimic a mass or blood products. However, MR imaging of silicone results in chemical shift artifact which should help narrow the imaging differential. We present a patient with incidental CT and MRI findings which resulted in a prolonged hospital course following misidentification of intraventricular silicone oil. Although the imaging differential for an intraventricular lesion may include metastasis, lymphoma, hemorrhage, choroid plexus papilloma/carcinoma, meningioma, subependymoma, and ependymoma, secondary imaging findings should be noted to ensure an accurate diagnosis. In patients with evidence of prior silicone retinopexy, visualization of an intraventricular lesion with associated chemical shift artifact should raise the possibility of intraventricular silicone oil migration.


Assuntos
Ventrículos Cerebrais/diagnóstico por imagem , Migração de Corpo Estranho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Otite Externa/diagnóstico , Descolamento Retiniano/tratamento farmacológico , Óleos de Silicone/uso terapêutico , Tomografia Computadorizada por Raios X/métodos , Vitrectomia/métodos , Adulto , Diagnóstico Diferencial , Humanos , Achados Incidentais , Masculino
12.
Otolaryngol Head Neck Surg ; 170(1): 187-194, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37582349

RESUMO

OBJECTIVE: To evaluate the magnetic resonance (MR) image artifact and image distortion associated with the two transcutaneous bone conduction implants currently available in the United States. STUDY DESIGN: Cadaveric study. METHODS: Two cadaveric head specimens (1 male, 1 female) were unilaterally implanted according to manufacturer guidelines and underwent MR imaging (General Electric and Siemens 1.5 T scanners) under the following device conditions: (1) no device, (2) Cochlear Osia with magnet and headwrap, (3) Cochlear Osia without magnet, and (4) MED-EL Bonebridge with magnet. Maximum metal mitigation techniques were employed in all conditions, and identical sequences were obtained. Blinded image scoring (diagnostic vs nondiagnostic image) was performed by experienced neuroradiologists according to anatomical subsites. RESULTS: All device conditions produced artifact and image distortion. The Osia with magnet produced diagnostic T1- and T2-weighted images of the ipsilateral temporal bone, however, non-echo planar imaging diffusion-weighted imaging (DWI) was nondiagnostic. The Osia without magnet scanned on the Siemens MR imaging demonstrated the least amount of artifact and was the only condition that allowed for diagnostic imaging of the ipsilateral temporal bone on DWI. The Bonebridge produced a large area of artifact and distortion with the involvement of the ipsilateral and contralateral temporal bones. CONCLUSION: In summary, of the three device conditions (Osia with magnet, Osia without magnet, and Bonebridge), Osia without magnet offered the least amount of artifact and distortion and was the only condition in which diagnostic DWI was available for the middle ear and mastoid regions on the Siemens MR imaging scanner.


Assuntos
Colesteatoma , Implantes Cocleares , Neuroma Acústico , Humanos , Masculino , Feminino , Neuroma Acústico/diagnóstico por imagem , Artefatos , Condução Óssea , Imageamento por Ressonância Magnética/métodos , Cadáver
13.
AJNR Am J Neuroradiol ; 45(7): 971-976, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365424

RESUMO

BACKGROUND AND PURPOSE: Cushing disease is typically caused by a pituitary adenoma that frequently is small and challenging to detect on conventional MR imaging. High-field-strength 7T MR imaging can leverage increased SNR and contrast-to-noise ratios compared with lower-field-strength MR imaging to help identify small pituitary lesions. We aimed to describe our institutional experience with 7T MR imaging in patients with Cushing disease and perform a review of the literature. MATERIALS AND METHODS: We performed a retrospective analysis of 7T MR imaging findings in patients with pathology-proved Cushing disease from a single institution, followed by a review of the literature on 7T MR imaging for Cushing disease. RESULTS: Our institutional experience identified Cushing adenomas in 10/13 (76.9%) patients on 7T; however, only 5/13 (38.5%) lesions were discrete. Overall, the imaging protocols used were heterogeneous in terms of contrast dose as well as type of postcontrast T1-weighted sequences (dynamic, 2D versus 3D, and type of 3D sequence). From our institutional data, specific postgadolinium T1-weighted sequences were helpful in identifying a surgical lesion as follows: dynamic contrast-enhanced, 2/7 (28.6%); 2D FSE, 4/8 (50%); 3D sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE), 5/6 (83.3%); and 3D MPRAGE, 8/11 (72.7%). The literature review identified Cushing adenomas in 31/33 (93.9%) patients on 7T. CONCLUSIONS: 7T MR imaging for pituitary lesion localization in Cushing disease is a new technique with imaging protocols that vary widely. Further comparative research is needed to identify the optimal imaging technique as well as assess the benefit of 7T over lower-field-strength MR imaging.


Assuntos
Imageamento por Ressonância Magnética , Hipersecreção Hipofisária de ACTH , Humanos , Hipersecreção Hipofisária de ACTH/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Adenoma/diagnóstico por imagem , Neoplasias Hipofisárias/diagnóstico por imagem , Idoso , Adulto Jovem
14.
AJNR Am J Neuroradiol ; 45(4): 468-474, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485198

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently identified brain tumor characterized by a distinct DNA methylation profile. Predominantly located in the posterior fossa of adults, HGAP is notably prevalent in individuals with neurofibromatosis type 1. We present an image-centric review of HGAP and explore the association between HGAP and neurofibromatosis type 1. Data were collected from 8 HGAP patients treated at two tertiary care institutions between January 2020 and October 2023. Demographic details, clinical records, management, and tumor molecular profiles were analyzed. Tumor characteristics, including location and imaging features on MR imaging, were reviewed. Clinical or imaging features suggestive of neurofibromatosis 1 or the presence of NF1 gene alteration were documented. The mean age at presentation was 45.5 years (male/female = 5:3). Tumors were midline, localized in the posterior fossa (n = 4), diencephalic/thalamic (n = 2), and spinal cord (n = 2). HGAP lesions were T1 hypointense, T2-hyperintense, mostly without diffusion restriction, predominantly peripheral irregular enhancement with central necrosis (n = 3) followed by mixed heterogeneous enhancement (n = 2). Two NF1 mutation carriers showed signs of neurofibromatosis type 1 before HGAP diagnosis, with one diagnosed during HGAP evaluation, strengthening the HGAP-NF1 link, particularly in patients with posterior fossa masses. All tumors were IDH1 wild-type, often with ATRX, CDKN2A/B, and NF1 gene alteration. Six patients underwent surgical resection followed by adjuvant chemoradiation. Six patients were alive, and two died during the last follow-up. Histone H3 mutations were not detected in our cohort, such as the common H3K27M typically seen in diffuse midline gliomas, linked to aggressive clinical behavior and poor prognosis. HGAP lesions may involve the brain or spine and tend to be midline or paramedian in location. Underlying neurofibromatosis type 1 diagnosis or imaging findings are important diagnostic cues.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/patologia , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Encéfalo/patologia , Mutação
15.
AJNR Am J Neuroradiol ; 45(7): 943-950, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38754997

RESUMO

BACKGROUND AND PURPOSE: Progressive MS is typically heralded by a myelopathic pattern of asymmetric progressive motor weakness. Focal individual "critical" demyelinating spinal cord lesions anatomically associated with progressive motor impairment may be a compelling explanation for this clinical presentation as described in progressive solitary sclerosis (single CNS demyelinating lesion), progressive demyelination with highly restricted MR imaging lesion burden (2-5 total CNS demyelinating lesions; progressive paucisclerotic MS), and progressive, exclusively unilateral hemi- or monoparetic MS (>5 CNS demyelinating progressive unilateral hemi- or monoparetic MS [PUHMS] lesions). Critical demyelinating lesions appear strikingly similar across these cohorts, and we describe their specific spinal cord MR imaging characteristics. MATERIALS AND METHODS: We performed a retrospective, observational MR imaging study comparing spinal cord critical demyelinating lesions anatomically associated with progressive motor impairment with any additional "noncritical" (not anatomically associated with progressive motor impairment) spinal cord demyelinating lesions. All spinal cord MR images (302 cervical and 91 thoracic) were reviewed by an experienced neuroradiologist with final radiologic assessment on the most recent MR imaging. Anatomic association with clinical progressive motor impairment was confirmed independently by MS subspecialists. RESULTS: Ninety-one individuals (PUHMS, 37 [41%], progressive paucisclerosis 35 [38%], progressive solitary sclerosis 19 [21%]) with 91 critical and 98 noncritical spinal cord MR imaging demyelinating lesions were evaluated. MR imaging characteristics that favored critical spinal cord demyelinating lesions over noncritical lesions included moderate-to-severe, focal, lesion-associated spinal cord atrophy: 41/91 (45%) versus 0/98 (0%) (OR, 161.91; 9.43 to >999.9); lateral column axial location (OR, 10.43; 3.88-28.07); central region (OR, 3.23; 1.78-5.88); ventral column (OR, 2.98; 1.55-5.72); and larger lesion size of the axial width (OR, 2.01;1.49-2.72), transverse axial size (OR, 1.66; 1.36-2.01), or lesion area (OR, 1.14; 1.08-1.2). Multiple regression analysis revealed focal atrophy and lateral axial location as having the strongest association with critical demyelinating lesions. CONCLUSIONS: Focal, lesion-associated atrophy, lateral column axial location, and larger lesion size are spinal cord MR imaging characteristics of critical demyelinating lesions. The presence of critical demyelinating lesions should be sought as these features may be associated with the development of progressive motor impairment in MS.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Progressão da Doença , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Idoso , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38383054

RESUMO

Temporal lobe epilepsy is a common form of epilepsy that is often associated with hippocampal sclerosis (HS). Although HS is commonly considered a binary assessment in radiologic evaluation, it is known that histopathologic changes occur in distinct clusters. Some subtypes of HS only affect certain subfields, resulting in minimal changes to the overall volume of the hippocampus. This is likely a major reason why whole hippocampal volumetrics have underperformed versus expert readers in the diagnosis of HS. With recent advancements in MRI technology, it is now possible to characterize the substructure of the hippocampus more accurately. However, this is not consistently addressed in radiographic evaluations. The histologic subtype of HS is critical for prognosis and treatment decision-making, necessitating improved radiologic classification of HS. The International League Against Epilepsy (ILAE) has issued a consensus classification scheme for subtyping HS histopathologic changes. This review aims to explore how the ILAE subtypes of HS correlate with radiographic findings, introduce a grading system that integrates radiologic and pathologic reporting in HS, and outline an approach to detecting HS subtypes by using MRI. This framework will not only benefit current clinical evaluations, but also enhance future studies involving high-resolution MRI in temporal lobe epilepsy.

17.
AJNR Am J Neuroradiol ; 45(5): 662-667, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38485194

RESUMO

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension is a condition resulting from a leak of CSF from the spinal canal arising independent of a medical procedure. Spontaneous intracranial hypotension can present with normal brain MR imaging findings and nonspecific symptoms, leading to the underdiagnosis in some patients and unnecessary invasive myelography in others who are found not to have the condition. Given the likelihood that spontaneous intracranial hypotension alters intracranial biomechanics, the goal of this study was to evaluate MR elastography as a potential noninvasive test to diagnose the condition. MATERIALS AND METHODS: We performed MR elastography in 15 patients with confirmed spontaneous intracranial hypotension from September 2022 to April 2023. Age, sex, symptom duration, and brain MR imaging Bern score were collected. MR elastography data were used to compute stiffness and damping ratio maps, and voxelwise modeling was performed to detect clusters of significant differences in mechanical properties between patients with spontaneous intracranial hypotension and healthy control participants. To evaluate diagnostic accuracy, we summarized each examination by 2 spatial pattern scores (one each for stiffness and damping ratio) and evaluated group-wise discrimination by receiver operating characteristic curve analysis. RESULTS: Patients with spontaneous intracranial hypotension exhibited significant differences in both stiffness and damping ratio (false discovery rate-corrected, Q < 0.05). Pattern analysis discriminated patients with spontaneous intracranial hypotension from healthy controls with an area under the curve of 0.97 overall, and the area under the curve was 0.97 in those without MR imaging findings of spontaneous intracranial hypotension. CONCLUSIONS: Results from this pilot study demonstrate MR elastography as a potential imaging biomarker and a noninvasive method for diagnosing spontaneous intracranial hypotension, including patients with normal brain MR imaging findings.


Assuntos
Técnicas de Imagem por Elasticidade , Hipotensão Intracraniana , Imageamento por Ressonância Magnética , Humanos , Hipotensão Intracraniana/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-38889969

RESUMO

BACKGROUND AND PURPOSE: Intra-cranial vessel wall imaging (IC-VWI) is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression and clinically acceptable gradient times. Herein, we present our preliminary findings on the evaluation of a deep learning optimized sequence using T1 weighted imaging. MATERIALS AND METHODS: Clinical and optimized Deep learning-based image reconstruction (DLBIR) T1 SPACE sequences were evaluated, comparing non-contrast sequences in ten healthy controls and post-contrast sequences in five consecutive patients. Images were reviewed on a Likert-like scale by four fellowship-trained neuroradiologists. Scores (range 1-4) were separately assigned for eleven vessel segments in terms of vessel wall and lumen delineation. Additionally, images were evaluated in terms of overall background noise, image sharpness and homogenous CSF signal. Segment-wise scores were compared using paired samples t-tests. RESULTS: The scan time for the clinical and DLBIR sequences were 7:26 minutes and 5:23 minutes respectively. DLBIR images showed consistently higher wall signal and lumen visualization scores, with the differences being statistically significant in the majority of vessel segments on both pre and post contrast images. DLBIR images had lower background noise, higher image sharpness and uniform CSF signal. Depiction of intracranial pathologies was better or similar on the DLBIR images. CONCLUSIONS: Our preliminary findings suggest that DLBIR optimized IC-VWI sequences may be helpful in achieving shorter gradient times with improved vessel wall visualization and overall image quality. These improvements may help with wider adoption of ICVWI in clinical practice and should be further validated on a larger cohort. ABBREVIATIONS: DL deep learning; VWI = vessel wall imaging.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38906672

RESUMO

Giant cell arteritis (GCA) is the most common primary large vessel systemic vasculitis in the western world. Even though the involvement of scalp and intracranial vessels has received much attention in the neuroradiology literature, GCA, being a systemic vasculitis can involve multiple other larger vessels including aorta and its major head and neck branches. Herein, the authors present a pictorial review of the various cranial, extracranial and orbital manifestations of GCA. An increased awareness of this entity may help with timely and accurate diagnosis, helping expedite therapy and preventing serious complications.ABBREVIATIONS: ACR= American College of Rheumatology, AION= Anterior Ischemic Optic Neuropathy, EULAR= European League Against Rheumatism, GCA= Giant Cell Arteritis, LV-GCA= Large vessel GCA, PMR= Polymyalgia Rheumatica, US= Ultrasound, VWI= Vessel Wall Imaging.

20.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38370724

RESUMO

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA