Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 134(23): 1866-1880, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27803035

RESUMO

BACKGROUND: Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. METHODS: We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3-/-), caspase-1 knockout (Casp-1-/-), and interleukin-1 receptor knockout (IL-1R-/-) mice treated with vehicle or aldosterone (600 µg·kg-1·d-1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. RESULTS: Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1ß levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1ß secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1ß in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. CONCLUSIONS: Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.


Assuntos
Aldosterona/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetilcolina/farmacologia , Animais , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Caspase 1/deficiência , Caspase 1/genética , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/sangue , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nigericina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/induzido quimicamente
2.
iScience ; 26(12): 108366, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047070

RESUMO

Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death. Macrophages exposed to tracheal aspirate with high IL-6 levels from intubated patients with COVID-19 or to recombinant human IL-6 exhibited decreased HLA-DR expression, increased CD95 and CD163 expression and IL-1ß production. IL-6 effects on macrophages were prevented by both CD95/CD95L antagonist and by IL-6 receptor antagonist and IL-6 or CD95 deficient mice showed significant reduction of acute pulmonary inflammation post-infection. Our findings show a non-canonical CD95L-CD95 pathway that simultaneously drives both macrophage activation and dysfunction and point to CD95/CD95L axis as therapeutic target.

3.
Am J Respir Crit Care Med ; 183(7): 922-31, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20971829

RESUMO

RATIONALE: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. OBJECTIVES: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. METHODS: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. MEASUREMENTS AND MAIN RESULTS: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. CONCLUSIONS: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.


Assuntos
Movimento Celular/efeitos dos fármacos , Hemopexina/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Sepse/mortalidade , Análise de Variância , Animais , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Movimento Celular/imunologia , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Escherichia coli , Hemopexina/imunologia , Selectina L/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Distribuição Aleatória , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Sepse/imunologia , Taxa de Sobrevida , Tioglicolatos/farmacologia , Regulação para Cima
4.
Front Physiol ; 13: 837603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350697

RESUMO

Obesity, an important risk factor for cardiovascular disease, promotes vascular oxidative stress. Considering that free testosterone levels remain within the reference range, especially in obese young men and that testosterone stimulates reactive oxygen species (ROS) generation, we sought to investigate whether testosterone interferes with obesity-associated oxidative stress and vascular dysfunction in male mice. We hypothesized that testosterone favors ROS accumulation and vascular dysfunction in high fat diet (HFD)-fed obese mice. We also questioned whether testosterone downregulates the nuclear factor E2-related factor 2 (Nrf2), one of the major cellular defense mechanisms against oxidative stimuli. Male C57Bl/6J mice were submitted to orchiectomy or sham-operation. Mice received either a control diet (CD) or HFD for 18 weeks. Vascular function was assessed in thoracic aortic rings and molecular mechanisms by which testosterone contributes to vascular dysfunction were determined. HFD reduced acetylcholine-induced vasodilation and increased vascular ROS generation in sham mice. Castration prevented these effects. Treatment of castrated mice fed either the CD or HFD with testosterone propionate decreased acetylcholine vasodilation. HFD decreased Nrf2 nuclear accumulation, events linked to decreased mRNA expression and activity of Nrf2-regulated enzymes (catalase, heme oxygenase-1, peroxiredoxin, and thioredoxin). These events were prevented in HFD-fed castrated mice. Bardoxolone, a Nrf2 activator, increased nuclear accumulation of Nrf2, decreased ROS generation and improved acetylcholine vasodilation in HFD-fed sham mice. In vitro, testosterone increased ROS generation and decreased Nrf2 nuclear accumulation. These effects were prevented in the presence of an androgen receptor antagonist, an inhibitor of gene transcription and an inhibitor of the pro-oxidant enzyme NOX-1. These results indicate that testosterone downregulates Nrf2, leading to oxidative stress and vascular dysfunction in HFD-fed obese young mice.

5.
Am J Hypertens ; 32(6): 579-587, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30875426

RESUMO

BACKGROUND: Acetylcholinesterase inhibition prevents autonomic imbalance, reduces inflammation, and attenuates the development of hypertension. Considering that vascular dysfunction is a crucial feature of arterial hypertension, we investigated the effects of chronic administration of acetylcholinesterase inhibitors-pyridostigmine or donepezil-on vascular reactivity of spontaneously hypertensive rats (SHR). METHODS: Endothelium-dependent relaxant responses to acetylcholine (ACh) and contractile responses induced by electric field stimulation (EFS) and alpha-adrenergic agonist were studied in mesenteric resistance arteries from SHR and Wistar Kyoto rats. SHR were treated for 16 weeks with vehicle, pyridostigmine (1.5 mg/kg/day) or donepezil (1.4 mg/kg/day). RESULTS: Pyridostigmine and donepezil decreased the vasoconstrictor responses to EFS, which were increased in vehicle-treated SHR. Acetylcholinesterase inhibition increased the modulatory effects of nitric oxide (NO) on SHR vascular reactivity, that is, N(ω)-nitro-(L)-arginine methyl ester (L-NAME) increased EFS-induced contractions and reduced ACh-induced relaxation, with more significant effects in pyridostigmine- and donepezil-treated SHR. The acetylcholinesterase inhibitors also decreased vascular reactive oxygen species levels. CONCLUSIONS: This study demonstrates for the first time that long-term administration of acetylcholinesterase inhibitors, pyridostigmine or donepezil, attenuates vascular reactivity dysfunction in SHR by decreasing reactive oxygen species generation and increasing NO bioavailability; possibly via increased endothelial NO synthase activity, and inhibition of NADPH oxidase activity.


Assuntos
Anti-Hipertensivos/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipertensão/prevenção & controle , Artérias Mesentéricas/efeitos dos fármacos , Brometo de Piridostigmina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
6.
Eur J Pharmacol ; 765: 375-83, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26362752

RESUMO

Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment.


Assuntos
Fluoxetina/administração & dosagem , Artérias Mesentéricas/metabolismo , Óxido Nítrico/biossíntese , Canais de Potássio Cálcio-Ativados/metabolismo , Vasoconstrição/fisiologia , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Óxido Nítrico/agonistas , Técnicas de Cultura de Órgãos , Canais de Potássio Cálcio-Ativados/agonistas , Ratos , Ratos Wistar , Vasoconstrição/efeitos dos fármacos
7.
Front Physiol ; 6: 269, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500555

RESUMO

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) ß subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

8.
Front Pharmacol ; 6: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784875

RESUMO

Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen receptors (GPER). GPER activation is associated with beneficial/protective effects in the vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated complications, we hypothesized that the beneficial effects mediated by vascular GPER activation, in response to aldosterone, are decreased in diabetes. Mesenteric resistance arteries from female, 14-16 weeks-old, control and diabetic (db/db) mice were used. Phenylephrine (PhE)-induced contractions were greater in arteries from db/db vs. control mice. Aldosterone (10 nM) increased maximal contractile responses to PhE in arteries from control mice, an effect elicited via activation of GPER. Although aldosterone did not increase PhE responses in arteries from db/db mice, blockade of GPER, and MR decreased PhE-induced contractile responses in db/db mesenteric arteries. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in arteries from both control and db/db mice via MR-dependent mechanisms. GPER antagonism further decreased ACh-induced relaxation in the control group, but did not affect ACh responses in the diabetic group. Aldosterone increased extracellular signal-regulated kinase 1/2 phosphorylation in arteries from control and db/db mice by a GPER-dependent mechanism. GPER, but not MR, gene, and protein expression, determined by RT-PCR and immunoblotting/immunofluorescence assays, respectively, were increased in arteries from db/db mice vs. control arteries. These findings indicate that aldosterone activates both vascular MR and GPER and that the beneficial effects of GPER activation are decreased in arteries from diabetic animals. Our results further elucidate the mechanisms by which aldosterone influences vascular function and contributes to vascular dysfunction in diabetes. Financial Support: FAPESP, CNPq, and CAPES, Brazil.

9.
J Immunol ; 180(1): 609-17, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18097063

RESUMO

Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ2-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ2 administration decreases leukocyte rolling and adhesion to the inflamed mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ2-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS-/- mice were not susceptible to 15d-PGJ2-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ2-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-1 expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ2, whereas 15d-PGJ2 inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ2 suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.


Assuntos
Migração e Rolagem de Leucócitos , Neutrófilos/imunologia , Óxido Nítrico/metabolismo , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Actinas/metabolismo , Animais , Capilares/metabolismo , Carragenina/farmacologia , Adesão Celular , Molécula 1 de Adesão Intercelular/metabolismo , Ligantes , Masculino , Mesentério/irrigação sanguínea , Camundongos , Camundongos Knockout , Microcirculação , Neutrófilos/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA