Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(2): 025605, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987376

RESUMO

Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.

2.
Nano Lett ; 20(6): 4064-4072, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32347731

RESUMO

Nanowires bring new possibilities to the field of hot-carrier photovoltaics by providing flexibility in combining materials for band engineering and using nanophotonic effects to control light absorption. Previously, an open-circuit voltage beyond the Shockley-Queisser limit was demonstrated in hot-carrier devices based on InAs-InP-InAs nanowire heterostructures. However, in these first experiments, the location of light absorption, and therefore the precise mechanism of hot-carrier extraction, was uncontrolled. In this Letter, we combine plasmonic nanoantennas with InAs-InP-InAs nanowire devices to enhance light absorption within a subwavelength region near an InP energy barrier that serves as an energy filter. From photon-energy- and irradiance-dependent photocurrent and photovoltage measurements, we find that photocurrent generation is dominated by internal photoemission of nonthermalized hot electrons when the photoexcited electron energy is above the barrier and by photothermionic emission when the energy is below the barrier. We estimate that an internal quantum efficiency up to 0.5-1.2% is achieved. Insights from this study provide guidelines to improve internal quantum efficiencies based on nanowire heterostructures.

3.
Small ; : e1801285, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30003665

RESUMO

For the purpose of functionalizing III-V semiconductor nanowires using n-doping, Sn-doped GaAs zincblende nanowires are produced, using the growth method of Aerotaxy. The growth conditions used are such that Ga droplets, formed on the nanowire surface, increase in number and concentrations when the Sn-precursor concentration is increased. Droplet-covered wires grown with varying Sn concentrations are analyzed by transmission electron microscopy and electron tomography, which together establish the positioning of the droplets to be preferentially on {-111}B facets. These facets have the same polarity as the main wire growth direction, [-1-1-1]B. This means that the generated Ga particles can form nucleation sites for possible nanowire branch growth. The concept of azimuthal mapping is introduced as a useful tool for nanowire surface visualization and evaluation. It is demonstrated here that electron tomography is useful in revealing both the surface and internal morphologies of the nanowires, opening up for applications in the analysis of more structurally complicated systems like radially asymmetrical nanowires. The analysis also gives a further understanding of the limits of the dopants which can be used for Aerotaxy nanowires.

4.
Nanotechnology ; 29(28): 285601, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664421

RESUMO

Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10-3. The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1-3) × 1019 cm-3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

5.
Nano Lett ; 16(9): 5701-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564139

RESUMO

We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

6.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339116

RESUMO

We have previously demonstrated that we can grow p-type GaAs nanowires using Zn doping during gold catalyzed growth with aerotaxy. In this investigation, we show how to calculate the hole concentrations in such nanowires. We base the calculations on the Zhang-Northrup defect formation energy. Using density functional theory, we calculate the energy of the defect, a Zn atom on a Ga site, using a supercell approach. The chemical potentials of Zn and Ga in the liquid catalyst particle are calculated from a thermodynamically assessed database including Au, Zn, Ga, and As. These quantities together with the chemical potential of the carriers enable us to calculate the hole concentration in the nanowires self-consistently. We validate our theoretical results against aerotaxy grown GaAs nanowires where we have varied the hole concentration by varying the Zn/Ga ratio in the aerotaxy growth.

7.
Nat Commun ; 10(1): 3361, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350402

RESUMO

We report gallium arsenide (GaAs) growth rates exceeding 300 µm h-1 using dynamic hydride vapor phase epitaxy. We achieved these rates by maximizing the gallium to gallium monochloride conversion efficiency, and by utilizing a mass-transport-limited growth regime with fast kinetics. We also demonstrate gallium indium phosphide growth at rates exceeding 200 µm h-1 using similar growth conditions. We grew GaAs solar cell devices by incorporating the high growth rate of GaAs and evaluated its material quality at these high rates. Solar cell growth rates ranged from 35 to 309 µm h-1 with open circuit voltages ranging from 1.04 to 1.07 V. The best devices exceeded 25% efficiency under the AM1.5 G solar spectrum. The high open-circuit voltages indicate that high material quality can be maintained at these extremely high growth rates. These results have strong implications toward lowering the deposition cost of III-V materials potentially enabling the deposition of high efficiency devices in mere seconds.

8.
Nat Commun ; 10(1): 4070, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481675

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA