Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 36(4): 977-984, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33404118

RESUMO

BACKGROUND: The MIND diet has been linked with prevention of Alzheimer's disease and cognitive decline but has not been fully assessed in the context of Parkinson's disease (PD). The objective of the present study was to determine whether MIND diet adherence is associated with the age of Parkinson's disease onset in a manner superior to that of the Mediterranean diet. METHODS: Food Frequency Questionnaires from 167 participants with PD and 119 controls were scored for MIND and 2 versions of Mediterranean diet adherence. Scores were compared between sex and disease subgroups, and PD diet adherence was correlated with age at onset using univariate and multivariate linear models. RESULTS: The female subgroup adhered more closely to the MIND diet than the male subgroup, and diet scores were not modified by disease status. Later age of onset correlated most strongly with MIND diet adherence in the female subgroup, corresponding to differences of up to 17.4 years (P < 0.001) between low and high dietary tertiles. Greek Mediterranean adherence was also significantly associated with later PD onset across all models (P = 0.05-0.03). Conversely, only Greek Mediterranean diet adherence remained correlated with later onset across all models in men, with differences of up to 8.4 years (P = 0.002). CONCLUSIONS: This cross-sectional study found a strong correlation between age of onset of PD and dietary habits, suggesting that nutritional strategies may be an effective tool to delay PD onset. Further studies may help to elucidate potential nutrition-related sex-specific pathophysiological mechanisms and differential prevalence rates in PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Dieta Mediterrânea , Doença de Parkinson , Estudos Transversais , Feminino , Grécia , Humanos , Masculino , Doença de Parkinson/epidemiologia
2.
JPEN J Parenter Enteral Nutr ; 48(4): 502-511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522020

RESUMO

BACKGROUND: The microbiome has a pivotal role in intestinal health, and nutrition has a major role shaping its structure. Enteral deprivation, in which no oral/enteral nutrition is administered, is common in hospitalized/gastrointestinal patients. The dynamics that enteral deprivation exerts on the microbial community, specifically in the small intestine, are not well understood. METHODS: Enteral deprivation was modeled with exclusive parenteral nutrition (EPN) mice. Mice were allocated to receive either EPN or saline and chow (control) and euthanized after 0, 2, 4, or 6 days. DNA was extracted from jejunum, ileum, and colon content. 16S sequencing was used to compare changes in microbial communities between groups. Functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. RESULTS: EPN-treated mice showed community changes throughout the intestine. Beta diversity in colon showed clear separation between the groups (Bray-Curtis, P < 0.001). Time-dependent dynamics were seen in ileal but not jejunal samples. Alpha diversity was lower in the colon of EPN mice compared with control/baseline mice (Chao1, P < 0.01) but not in ileum/jejunum. Progressive loss of single-taxon domination was seen, most notably in the small intestine. This was accompanied by increases/decreases in specific taxa. A clear separation was seen in the functional capacity of the community between fed and enterally deprived mice at the ileum and colon, which was observed early on. CONCLUSIONS: Enteral deprivation disturbs the microbial community in a spatial and dynamic manner. There should be further focus on studying the effect of these changes on the host.


Assuntos
Colo , Microbioma Gastrointestinal , Íleo , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Íleo/microbiologia , Colo/microbiologia , Colo/metabolismo , Nutrição Parenteral , Masculino , Nutrição Enteral/métodos , Camundongos Endogâmicos C57BL , Jejuno/microbiologia , Intestino Delgado/microbiologia , Filogenia , Bactérias/classificação
3.
mSphere ; 9(1): e0037923, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38078745

RESUMO

Parkinson's disease (PD) is characterized by motor symptoms and a loss of dopaminergic neurons, as well as a variety of non-motor symptoms, including constipation, depression, and anxiety. Recently, evidence has also accumulated for a link between gut microbiota and PD. Most PD patients are on dopamine replacement therapy, primarily a combination of L-DOPA and carbidopa; however, the effect of these medications on the microbiota and non-motor symptoms in PD is still unclear. In this study, we explored the effects of chronic oral treatment with L-DOPA plus carbidopa (LDCD) on the gut microbiota and non-motor symptoms in males of a transgenic mouse model of PD (dbl-PAC-Tg(SNCAA53T);Snca-/-). To further test whether the effects of these PD medications were mediated by the gut microbiota, oral antibiotic treatment (Abx; vancomycin and neomycin) was included both with and without concurrent LDCD treatment. Post-treatment, the gastrointestinal, motor, and behavioral phenotypes were profiled, and fecal, ileal, and jejunal samples were analyzed for gut microbiota composition by 16S sequencing. LDCD treatment was found to improve symptoms of constipation and depression in this model, concurrent with increases in Turicibacter abundance in the ileum. Abx treatment worsened the symptoms of constipation, possibly through decreased levels of short-chain fatty acids and disrupted gut barrier function. LDCD + Abx treatment showed an interaction effect on behavioral symptoms that was also associated with ileal Turicibacter levels. This study demonstrates that, in a mouse model, PD medications and antibiotics affect PD-related non-motor symptoms potentially via the gut microbiota.IMPORTANCEThe motor symptoms of Parkinson's disease (PD) are caused by a loss of dopamine-producing neurons and are commonly treated with dopamine replacement therapy (L-DOPA plus carbidopa). PD has also been associated with altered gut microbiota composition. However, the effects of these PD medications on PD-related non-motor symptoms and the gut microbiota have not been well characterized. This study uses a transgenic mouse model of PD to help resolve medication-induced microbiota alterations from those that are potentially disease relevant within a PD context, and explores how long-term treatment may interact with the gut microbiota to impact non-motor symptoms.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Carbidopa/uso terapêutico , Camundongos Transgênicos , Dopamina , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/genética , Constipação Intestinal
4.
Nat Microbiol ; 8(12): 2392-2405, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973864

RESUMO

Globally, ~340 million children suffer from multiple micronutrient deficiencies, accompanied by high pathogenic burden and death due to multidrug-resistant bacteria. The microbiome is a reservoir of antimicrobial resistance (AMR), but the implications of undernutrition on the resistome is unclear. Here we used a postnatal mouse model that is deficient in multiple micronutrients (that is, zinc, folate, iron, vitamin A and vitamin B12 deficient) and shotgun metagenomic sequencing of faecal samples to characterize gut microbiome structure and functional potential, and the resistome. Enterobacteriaceae were enriched in micronutrient-deficient mice compared with mice fed an isocaloric experimental control diet. The mycobiome and virome were also altered with multiple micronutrient deficiencies including increased fungal pathogens such as Candida dubliniensis and bacteriophages. Despite being antibiotic naïve, micronutrient deficiency was associated with increased enrichment of genes and gene networks encoded by pathogenic bacteria that are directly or indirectly associated with intrinsic antibiotic resistance. Bacterial oxidative stress was associated with intrinsic antibiotic resistance in these mice. This analysis reveals multi-kingdom alterations in the gut microbiome as a result of co-occurring multiple micronutrient deficiencies and the implications for antibiotic resistance.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Humanos , Criança , Animais , Camundongos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética , Resistência Microbiana a Medicamentos , Bactérias/genética , Micronutrientes
5.
Front Nutr ; 10: 1151670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497061

RESUMO

Introduction: Micronutrients perform a wide range of physiological functions essential for growth and development. However, most people still need to meet the estimated average requirement worldwide. Globally, 2 billion people suffer from micronutrient deficiency, most of which are co-occurring deficiencies in children under age five. Despite decades of research, animal models studying multiple micronutrient deficiencies within the early-life period are lacking, which hinders our complete understanding of the long-term health implications and may contribute to the inefficacy of some nutritional interventions. Evidence supporting the Developmental Origins of Health and Disease (DOHaD) theory demonstrates that early-life nutritional deficiencies carry life-long consequences mediated through various mechanisms such as abnormal metabolic programming, stunting, altered body composition, and the gut microbiome. However, this is largely unexplored in the multiple micronutrient deficient host. Methods: we developed a preclinical model to examine undernutrition's metabolic and functional impact on the host and gut microbiome early in life. Three-week-old weanling C57BL/6N male mice were fed a low-micronutrient diet deficient in zinc, folate, iron, vitamin A, and vitamin B12 or a control diet for 4-weeks. Results: Our results showed that early-life multiple micronutrient deficiencies induced stunting, altered body composition, impaired glucose and insulin tolerance, and altered the levels of other micronutrients not depleted in the diet within the host. In addition, functional metagenomics profiling and a carbohydrate fermentation assay showed an increased microbial preference for simple sugars rather than complex ones, suggestive of a less developed microbiome in the low-micronutrient-fed mice. Moreover, we found that a zinc-only deficient diet was not sufficient to induce these phenotypes, further supporting the importance of studying co-occurring deficiencies. Discussion: Together, these findings highlight a previously unappreciated role of early-life multiple micronutrient deficiencies in shaping the metabolic phenome of the host and gut microbiome through altered glucose energy metabolism, which may have implications for metabolic disease later in life in micronutrient-deficient survivors.

6.
J Parkinsons Dis ; 12(5): 1479-1495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599496

RESUMO

BACKGROUND: Parkinson's disease (PD) is a multi-system disorder consisting of not only classic motor symptoms but also a variety of non-motor symptoms including gastrointestinal (GI) dysfunction and mood disorders. The gut microbiota has been suggested to play a role in modulating PD motor and non-motor features, although the causality and mechanisms behind these proposed interactions remains largely understudied. OBJECTIVE: In this study, we aimed to provide in-depth characterization of an established mouse model of PD (transgenic (TG) SNCA A53T) and experimentally address how changes to the gut microbiota impact the PD-like phenotype. METHODS: We profiled the PD-like phenotype of transgenic mice through a panel of motor, GI, and behavioral tests. We then investigated how antibiotic treatment or gut microbial community transfer (via cohousing with wild-type mice) impacted the PD-like phenotype. RESULTS: We found that this mouse model demonstrated early (6 weeks of age) motor symptoms when compared to a wild-type control mouse strain. Transgenic mice also exhibited early GI dysfunction, as well as behavioral alterations, including reduced anxiety-like behavior, and increased depression-like and apathy-like behavior. Compared to wild-type mice, the transgenic fecal microbiota was less diverse and compositionally distinct. Interestingly, drastic alterations to the gut microbiota, through antibiotic treatment or cohousing with wild-type mice, had a minimal effect on the motor, GI, and behavioral phenotype of transgenic mice. CONCLUSION: We concluded that this mouse model effectively recapitulates motor and non-motor features of PD; however, the gut microbiota appears to exhibit a minor impact on the pathophysiology of this PD model.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doença de Parkinson , Animais , Antibacterianos , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Transgênicos , Fenótipo
7.
J Mol Biol ; 434(2): 167398, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34902431

RESUMO

Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal ß-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.


Assuntos
Amidas/química , Deutério/química , Hidrogênio/química , Ligação Proteica , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Proteínas/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA