Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687357

RESUMO

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Animais , Capsídeo/ultraestrutura , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Espalhamento a Baixo Ângulo , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
3.
PLoS Pathog ; 19(2): e1011135, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745654

RESUMO

Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Humanos , Animais , Camundongos , Virus da Influenza A Subtipo H5N1/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Galinhas/metabolismo , Furões , Vírus da Influenza A/metabolismo , Mutação , Influenza Humana/genética
4.
J Virol ; 97(2): e0194322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722971

RESUMO

Virus replication depends on a complex interplay between viral and host proteins. In the case of African swine fever virus (ASFV), a large DNA virus, only a few virus-host protein-protein interactions have been identified to date. In this study, we demonstrate that the ASFV protein CP204L interacts with the cellular homotypic fusion and protein sorting (HOPS) protein VPS39, blocking its association with the lysosomal HOPS complex, which modulates endolysosomal trafficking and promotes lysosome clustering. Instead, CP204L and VPS39 are targeted to virus factories and localized at the periphery of the virus DNA replication sites. Furthermore, we show that loss of VPS39 reduces the levels of virus proteins synthesized in the early phase of infection and delays ASFV replication but does not completely inhibit it. Collectively, these results identify a novel virus-host protein interaction that modulates host membrane rearrangement during infection and provide evidence that CP204L is a multifunctional protein engaged in distinct steps of the ASFV life cycle. IMPORTANCE African swine fever virus (ASFV) was first identified over a hundred years ago. Since then, much effort has been made to understand the pathogenesis of ASFV. However, the specific roles of many individual ASFV proteins during the infection remain enigmatic. This study provides evidence that CP204L, one of the most abundant ASFV proteins, modulates endosomal trafficking during virus infection. Through protein-protein interaction, CP204L prevents the recruitment of VPS39 to the endosomal and lysosomal membranes, resulting in their accumulation. Consequently, CP204L and VPS39 become sequestered in the ASFV replication and assembly site, known as the virus factory. These results uncover a novel function of viral protein CP204L and extend our understanding of complex interaction between virus and host.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Replicação Viral , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Lisossomos/metabolismo , Transporte Proteico , Suínos , Vacúolos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Virol ; 97(4): e0140622, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022163

RESUMO

The genomes of numerous herpesviruses have been cloned as infectious bacterial artificial chromosomes. However, attempts to clone the complete genome of infectious laryngotracheitis virus (ILTV), formally known as Gallid alphaherpesvirus-1, have been met with limited success. In this study, we report the development of a cosmid/yeast centromeric plasmid (YCp) genetic system to reconstitute ILTV. Overlapping cosmid clones were generated that encompassed 90% of the 151-Kb ILTV genome. Viable virus was produced by cotransfecting leghorn male hepatoma (LMH) cells with these cosmids and a YCp recombinant containing the missing genomic sequences - spanning the TRS/UL junction. An expression cassette for green fluorescent protein (GFP) was inserted within the redundant inverted packaging site (ipac2), and the cosmid/YCp-based system was used to generate recombinant replication-competent ILTV. Viable virus was also reconstituted with a YCp clone containing a BamHI linker within the deleted ipac2 site, further demonstrating the nonessential nature of this site. Recombinants deleted in the ipac2 site formed plaques undistinguished from those viruses containing intact ipac2. The 3 reconstituted viruses replicated in chicken kidney cells with growth kinetics and titers similar to the USDA ILTV reference strain. Specific pathogen-free chickens inoculated with the reconstituted ILTV recombinants succumbed to levels of clinical disease similar to that observed in birds inoculated with wildtype viruses, demonstrating the reconstituted viruses were virulent. IMPORTANCE Infectious laryngotracheitis virus (ILTV) is an important pathogen of chicken with morbidity of 100% and mortality rates as high as 70%. Factoring in decreased production, mortality, vaccination, and medication, a single outbreak can cost producers over a million dollars. Current attenuated and vectored vaccines lack safety and efficacy, leaving a need for better vaccines. In addition, the lack of an infectious clone has also impeded understanding viral gene function. Since infectious bacterial artificial chromosome (BAC) clones of ILTV with intact replication origins are not feasible, we reconstituted ILTV from a collection of yeast centromeric plasmids and bacterial cosmids, and identified a nonessential insertion site within a redundant packaging site. These constructs and the methodology necessary to manipulate them will facilitate the development of improved live virus vaccines by modifying genes encoding virulence factors and establishing ILTV-based viral vectors for expressing immunogens of other avian pathogens.


Assuntos
Cosmídeos , Herpesvirus Galináceo 1 , Mutagênese , Plasmídeos , Animais , Masculino , Galinhas , Cosmídeos/genética , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/patogenicidade , Plasmídeos/genética , Doenças das Aves Domésticas/virologia , Saccharomyces cerevisiae/genética , Linhagem Celular , Genoma Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Vet Res ; 55(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173025

RESUMO

Avian influenza viruses (AIV) of the H7N7 subtype are enzootic in the wild bird reservoir in Europe, cause infections in poultry, and have sporadically infected humans. The non-structural protein PB1-F2 is encoded in a second open frame in the polymerase segment PB1 and its sequence varies with the host of origin. While mammalian isolates predominantly carry truncated forms, avian isolates typically express full-length PB1-F2. PB1-F2 is a virulence factor of influenza viruses in mammals. It modulates the host immune response, causing immunopathology and increases pro-inflammatory responses. The role of full-length PB1-F2 in IAV pathogenesis as well as its impact on virus adaptation and virulence in poultry remains enigmatic. Here, we characterised recombinant high pathogenicity AIV (HPAIV) H7N7 expressing or lacking PB1-F2 in vitro and in vivo in chickens. In vitro, full-length PB1-F2 modulated viability of infected chicken fibroblasts by limiting apoptosis. In chickens, PB1-F2 promoted gastrointestinal tropism, as demonstrated by enhanced viral replication in the gut and increased cloacal shedding. PB1-F2's effects on cellular immunity however were marginal. Overall, chickens infected with full-length PB1-F2 virus survived for shorter periods, indicating that PB1-F2 is also a virulence factor in bird-adapted viruses.


Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Influenza Aviária , Humanos , Animais , Galinhas/metabolismo , Virulência , Proteínas Virais/metabolismo , Vírus da Influenza A/metabolismo , Fatores de Virulência/genética , Mamíferos
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443157

RESUMO

The sex-determining region on the Y chromosome (SRY) is thought to be the central genetic element of male sex development in mammals. Pathogenic modifications within the SRY gene are associated with a male-to-female sex reversal syndrome in humans and other mammalian species, including rabbits and mice. However, the underlying mechanisms are largely unknown. To understand the biological function of the SRY gene, a site-directed mutational analysis is required to investigate associated phenotypic changes at the molecular, cellular, and morphological level. Here, we successfully generated a knockout of the porcine SRY gene by microinjection of two CRISPR-Cas ribonucleoproteins, targeting the centrally located "high mobility group" (HMG), followed by a frameshift mutation of the downstream SRY sequence. This resulted in the development of genetically male (XY) pigs with complete external and internal female genitalia, which, however, were significantly smaller than in 9-mo-old age-matched control females. Quantitative digital PCR analysis revealed a duplication of the SRY locus in Landrace pigs similar to the known palindromic duplication in Duroc breeds. Our study demonstrates the central role of the HMG domain in the SRY gene in male porcine sex determination. This proof-of-principle study could assist in solving the problem of sex preference in agriculture to improve animal welfare. Moreover, it establishes a large animal model that is more comparable to humans with regard to genetics, physiology, and anatomy, which is pivotal for longitudinal studies to unravel mammalian sex determination and relevant for the development of new interventions for human sex development disorders.


Assuntos
Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Sequência de Aminoácidos/genética , Animais , Proteínas de Ligação a DNA/genética , Transtornos do Desenvolvimento Sexual/genética , Mutação da Fase de Leitura/genética , Genes sry/genética , Domínios HMG-Box/genética , Masculino , Mutação/genética , Proteínas Nucleares/genética , Estudo de Prova de Conceito , Domínios Proteicos/genética , Suínos/genética , Fatores de Transcrição/genética , Cromossomo Y/genética
8.
J Virol ; 96(13): e0014922, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35670594

RESUMO

Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Proteínas Virais , Virulência , Animais , Patos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/transmissão , Interferons , Neuraminidase/genética , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética
9.
J Virol ; 96(17): e0099422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993736

RESUMO

Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Perus , Fatores de Virulência , Virulência , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Perus/virologia , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genética
10.
PLoS Pathog ; 17(11): e1010117, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843605

RESUMO

Plasmacytoid dendritic cells (pDC) are important innate immune cells during the onset of viral infections as they are specialized in the production of massive amounts of antiviral type I interferon (IFN). Alphaherpesviruses such as herpes simplex virus (HSV) or pseudorabies virus (PRV) are double stranded DNA viruses and potent stimulators of pDC. Detailed information on how PRV activates porcine pDC is lacking. Using PRV and porcine primary pDC, we report here that PRV virions, so-called heavy (H-)particles, trigger IFNα production by pDC, whereas light (L-) particles that lack viral DNA and capsid do not. Activation of pDC requires endosomal acidification and, importantly, depends on the PRV gD envelope glycoprotein and O-glycosylations. Intriguingly, both for PRV and HSV-1, we found that L-particles suppress H-particle-mediated activation of pDC, a process which again depends on viral gD. This is the first report describing that gD plays a critical role in alphaherpesvirus-induced pDC activation and that L-particles directly interfere with alphaherpesvirus-induced IFNα production by pDC.


Assuntos
Células Dendríticas/imunologia , Herpes Simples/imunologia , Interferon Tipo I/metabolismo , Pseudorraiva/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/fisiologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/fisiologia , Masculino , Pseudorraiva/metabolismo , Pseudorraiva/virologia , Suínos , Testículo/imunologia , Testículo/metabolismo , Testículo/virologia , Proteínas do Envelope Viral/genética
11.
Virol J ; 20(1): 110, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264455

RESUMO

BACKGROUND: The high susceptibility of carnivores to Suid Alphaherpesvirus 1 [SuAHV1, synonymous pseudorabies virus (PrV)], renders them inadvertent sentinels for the possible occurrence of Aujeszky's disease (AD) in domestic and wild swine populations. The aim of this study was to epidemiologically analyse the occurrence of PrV infections in domestic and wild animals in Germany during the last three decades and to genetically characterise the causative PrV isolates. METHODS: PrV in dogs was detected using standard virological techniques including conventional and real time PCR, virus isolation or by immunohistochemistry. Available PrV isolates were characterized by partial sequencing of the open gC reading frame and the genetic traits were compared with those of archived PrV isolates from carnivores and domestic pigs from Germany before the elimination of AD in the domestic pig population. RESULTS: During 1995 and 2022, a total of 38 cases of AD in carnivores, e.g. dogs and red foxes, were laboratory confirmed. Sequencing and subsequent phylogenetic analysis of PrV isolates established a strong connection between AD cases in carnivores and the occurrence of PrV infections in European wild boars in the end phase of and after elimination of AD from the domestic pig population. While PrV infections occur at low numbers but regularly in hunting dogs, interestingly, PrV was not observed in grey wolves in Germany. In none of 682 dead-found grey wolves and wolf-dog hybrids tested from Germany during 2006-2022 could PrV infection be detected by molecular means. CONCLUSIONS: Although PrV has been eliminated from domestic pigs, spillover infections in domestic and wild carnivores should always be expected given the endemic presence of PrV in wild pig populations. Since detection of PrV DNA and virus in carnivores is sporadic even in areas with high seroprevalence of PrV in wild pigs, it may not reflect the full diversity of PrV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Lobos , Suínos , Animais , Sus scrofa , Pseudorraiva/epidemiologia , Herpesvirus Suídeo 1/genética , Filogenia , Estudos Soroepidemiológicos , Doenças dos Suínos/epidemiologia , Alemanha/epidemiologia
13.
J Virol ; 95(18): e0044521, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34160261

RESUMO

Highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade 2.3.4.4A in 2014/2015 and clade 2.3.4.4B from 2016 up to today. Both clades were highly virulent in chickens, but only clade B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in vitro experiments indicated that clade 2.3.4.4A and clade 2.3.4.4B viruses have a preference for NS1 of 237 aa and 217 aa, respectively, over NS1 of 230 aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C terminus (CTE) of clade B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade A virus was observed. Remarkably, the NS1 of clade A and clade B, regardless of length, was efficient in blocking interferon (IFN) induction in infected chickens, and changes in the NS1 C terminus reduced the efficiency for interferon antagonism. Together, the NS1 C terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks. IMPORTANCE The panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated the poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. The two clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237 aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217 aa (exclusively found in Europe) due to stop codons in the C terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission, and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.


Assuntos
Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/transmissão , Doenças das Aves Domésticas/virologia , Proteínas não Estruturais Virais/metabolismo , Virulência , Replicação Viral , Animais , Galinhas , Citocinas/metabolismo , Patos , Influenza Aviária/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Pulmão/metabolismo , Pulmão/virologia , Baço/metabolismo , Baço/virologia , Proteínas não Estruturais Virais/genética
14.
PLoS Pathog ; 16(3): e1008445, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226043

RESUMO

Herpesviral encephalitis caused by Herpes Simplex Virus 1 (HSV-1) is one of the most devastating diseases in humans. Patients present with fever, mental status changes or seizures and when untreated, sequelae can be fatal. Herpes Simplex Encephalitis (HSE) is characterized by mainly unilateral necrotizing inflammation effacing the frontal and mesiotemporal lobes with rare involvement of the brainstem. HSV-1 is hypothesized to invade the CNS via the trigeminal or olfactory nerve, but viral tropism and the exact route of infection remain unclear. Several mouse models for HSE have been developed, but they mimic natural infection only inadequately. The porcine alphaherpesvirus Pseudorabies virus (PrV) is closely related to HSV-1 and Varicella Zoster Virus (VZV). While pigs can control productive infection, it is lethal in other susceptible animals associated with severe pruritus leading to automutilation. Here, we describe the first mutant PrV establishing productive infection in mice that the animals are able to control. After intranasal inoculation with a PrV mutant lacking tegument protein pUL21 and pUS3 kinase activity (PrV-ΔUL21/US3Δkin), nearly all mice survived despite extensive infection of the central nervous system. Neuroinvasion mainly occurred along the trigeminal pathway. Whereas trigeminal first and second order neurons and autonomic ganglia were positive early after intranasal infection, PrV-specific antigen was mainly detectable in the frontal, mesiotemporal and parietal lobes at later times, accompanied by a long lasting lymphohistiocytic meningoencephalitis. Despite this extensive infection, mice showed only mild to moderate clinical signs, developed alopecic skin lesions, or remained asymptomatic. Interestingly, most mice exhibited abnormalities in behavior and activity levels including slow movements, akinesia and stargazing. In summary, clinical signs, distribution of viral antigen and inflammatory pattern show striking analogies to human encephalitis caused by HSV-1 or VZV not observed in other animal models of disease.


Assuntos
Encefalite por Varicela Zoster , Gânglios Autônomos , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Suídeo 1 , Herpesvirus Humano 3 , Neurônios , Pseudorraiva , Animais , Modelos Animais de Doenças , Encefalite por Varicela Zoster/genética , Encefalite por Varicela Zoster/metabolismo , Feminino , Gânglios Autônomos/metabolismo , Gânglios Autônomos/patologia , Gânglios Autônomos/virologia , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Pseudorraiva/genética , Pseudorraiva/metabolismo , Pseudorraiva/patologia , Suínos
15.
Artigo em Inglês | MEDLINE | ID: mdl-33495228

RESUMO

Herpesviruses are widespread and can cause serious illness. Many currently available antiviral drugs have limited effects, result in rapid development of resistance, and often exhibit dose-dependent toxicity. Especially for human cytomegalovirus (HCMV), new well-tolerated compounds with novel mechanisms of action are urgently needed. In this study, we characterized the antiviral activity of two new diazadispiroalkane derivatives, 11826091 and 11826236. These two small molecules exhibited strong activity against low-passage-number HCMV. Pretreatment of cell-free virus with these compounds greatly reduced infection. Time-of-addition assays where 11826091 or 11826236 was added to cells before infection, before and during infection, or during or after infection demonstrated an inhibitory effect on early steps of infection. Interestingly, 11826236 had an effect by addition to cells after infection. Results from entry assays showed the major effect to be on attachment. Only 11826236 had a minimal effect on penetration comparable to heparin. Further, no effect on virus infection was found for cell lines with a defect in heparan sulfate expression or lacking all surface glycosaminoglycans, indicating that these small molecules bind to heparan sulfate on the cell surface. To test this further, we extended our analyses to pseudorabies virus (PrV), a member of the Alphaherpesvirinae, which is known to use cell surface heparan sulfate for initial attachment via nonessential glycoprotein C (gC). While infection with PrV wild type was strongly impaired by 11826091 or 11826236, as with heparin, a mutant lacking gC was unaffected by either treatment, demonstrating that primary attachment to heparan sulfate via gC is targeted by these small molecules.


Assuntos
Herpesvirus Suídeo 1 , Internalização do Vírus , Alcanos , Animais , Antivirais , Glicosaminoglicanos , Heparina/farmacologia , Heparitina Sulfato , Humanos , Compostos de Espiro , Proteínas do Envelope Viral
16.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32051272

RESUMO

Herpesvirus nucleocapsids leave the nucleus by a vesicle-mediated translocation mediated by the viral nuclear egress complex (NEC). The NEC is composed of two conserved viral proteins, designated pUL34 and pUL31 in the alphaherpesvirus pseudorabies virus (PrV). It is required for efficient nuclear egress and is sufficient for vesicle formation and scission from the inner nuclear membrane (INM). Structure-based mutagenesis identified a lysine at position 242 (K242) in pUL31, located in the most membrane distal part of the NEC, to be crucial for efficient nucleocapsid incorporation into budding vesicles. Replacing the lysine by alanine (K242A) resulted in accumulations of empty vesicles in the perinuclear space, despite the presence of excess nucleocapsids in the nucleus. However, it remained unclear whether the defect in capsid incorporation was due to interference with a direct, electrostatic interaction between the capsid and the NEC or structural restrictions. To test this, we replaced K242 with several amino acids, thereby modifying the charge, size, and side chain orientation. In addition, virus recombinants expressing pUL31-K242A were passaged and screened for second-site mutations. Compensatory mutations at different locations in pUL31 or pUL34 were identified, pointing to an inherent flexibility of the NEC. In summary, our data suggest that the amino acid at position 242 does not directly interact with the nucleocapsid but that rearrangements in the NEC coat are required for efficient nucleocapsid envelopment at the INM.IMPORTANCE Herpesviruses encode an exceptional vesicle formation and scission machinery, which operates at the inner nuclear membrane, translocating the viral nucleocapsid from the nucleus into the perinuclear space. The conserved herpesviral nuclear egress complex (NEC) orchestrates this process. High-resolution imaging approaches as well as the recently solved crystal structures of the NEC provided deep insight into the molecular details of vesicle formation and scission. Nevertheless, the molecular mechanism of nucleocapsid incorporation remained unclear. In accordance with structure-based predictions, a basic amino acid could be pinpointed in the most membrane-distal domain of the NEC (pUL31-K242), indicating that capsid incorporation might depend on a direct electrostatic interaction. Our follow-up study, described here, however, shows that the positive charge is not relevant but that the overall structure matters.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Análise Mutacional de DNA/métodos , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Mutação , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Animais , Proteínas do Capsídeo , Linhagem Celular , Núcleo Celular/virologia , Chlorocebus aethiops , Seguimentos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Membrana Nuclear/metabolismo , Conformação Proteica , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Vírion/metabolismo
17.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941788

RESUMO

Protein kinases homologous to the US3 gene product (pUS3) of herpes simplex virus (HSV) are conserved throughout the alphaherpesviruses but are absent from betaherpesviruses and gammaherpesviruses. pUS3 homologs are multifunctional and are involved in many processes, including modification of the cytoskeleton, inhibition of apoptosis, and immune evasion. pUS3 also plays a role in efficient nuclear egress of alphaherpesvirus nucleocapsids. In the absence of pUS3, primary enveloped virions accumulate in the perinuclear space (PNS) in large invaginations of the inner nuclear membrane (INM), pointing to a modulatory function for pUS3 during deenvelopment. The HSV and pseudorabies virus (PrV) US3 genes are transcribed into two mRNAs encoding two pUS3 isoforms, which have different aminoterminal sequences and abundances. To test whether the two isoforms in PrV serve different functions, we constructed mutant viruses expressing exclusively either the larger minor or the smaller major isoform, a mutant virus with decreased expression of the smaller isoform, or a mutant with impaired kinase function. Respective virus mutants were investigated in several cell lines. Our results show that absence of the larger pUS3 isoform has no detectable effect on viral replication in cell culture, while full expression of the smaller isoform and intact kinase activity is required for efficient nuclear egress. Absence of pUS3 resulted in only minor titer reduction in most cell lines tested but disclosed a more severe defect in Madin-Darby bovine kidney cells. However, accumulations of primary virions in the PNS do not account for the observed titer reduction in PrV.IMPORTANCE A plethora of substrates and functions have been assigned to the alphaherpesviral pUS3 kinase, including a role in nuclear egress. In PrV, two different pUS3 isoforms are expressed, which differ in size, abundance, and intracellular localization. Their respective role in replication is unknown, however. Here, we show that efficient nuclear egress of PrV requires the smaller isoform and intact kinase activity, whereas absence of the larger isoform has no significant effect on viral replication. Thus, there is a clear distinction in function between the two US3 gene products of PrV.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/enzimologia , Proteínas Serina-Treonina Quinases/química , Proteínas Virais/química , Animais , Apoptose , Bovinos , Chlorocebus aethiops , Citoesqueleto/metabolismo , Genoma Viral , Herpesvirus Suídeo 1/fisiologia , Rim/citologia , Mutação , Membrana Nuclear/metabolismo , Fenótipo , Isoformas de Proteínas , Coelhos , Células Vero , Montagem de Vírus
18.
Emerg Infect Dis ; 26(12): 2979-2981, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034284

RESUMO

We inoculated 6 cattle with severe acute respiratory syndrome coronavirus 2 and kept them together with 3 uninoculated cattle. We observed viral replication and specific seroreactivity in 2 inoculated animals, despite high levels of preexisting antibody titers against a bovine betacoronavirus. The in-contact animals did not become infected.


Assuntos
COVID-19/transmissão , SARS-CoV-2/genética , Animais , Bovinos/virologia , Pandemias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zoonoses Virais/transmissão , Replicação Viral
19.
Emerg Infect Dis ; 26(12): 2982-2985, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089771

RESUMO

Raccoon dogs might have been intermediate hosts for severe acute respiratory syndrome-associated coronavirus in 2002-2004. We demonstrated susceptibility of raccoon dogs to severe acute respiratory syndrome coronavirus 2 infection and transmission to in-contact animals. Infected animals had no signs of illness. Virus replication and tissue lesions occurred in the nasal conchae.


Assuntos
COVID-19/transmissão , SARS-CoV-2/genética , Animais , COVID-19/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/virologia , Pandemias , Cães Guaxinins/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zoonoses Virais , Eliminação de Partículas Virais
20.
EMBO J ; 35(13): 1385-99, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234299

RESUMO

Herpes simplex virus (HSV) 1 stimulates type I IFN expression through the cGAS-STING-TBK1 signaling axis. Macrophages have recently been proposed to be an essential source of IFN during viral infection. However, it is not known how HSV-1 inhibits IFN expression in this cell type. Here, we show that HSV-1 inhibits type I IFN induction through the cGAS-STING-TBK1 pathway in human macrophages, in a manner dependent on the conserved herpesvirus protein ICP27. This viral protein was expressed de novo in macrophages with early nuclear localization followed by later translocation to the cytoplasm where ICP27 prevented activation of IRF3. ICP27 interacted with TBK1 and STING in a manner that was dependent on TBK1 activity and the RGG motif in ICP27. Thus, HSV-1 inhibits expression of type I IFN in human macrophages through ICP27-dependent targeting of the TBK1-activated STING signalsome.


Assuntos
Herpesvirus Humano 1/patogenicidade , Proteínas Imediatamente Precoces/metabolismo , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA