Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Entomol Soc Am ; 117(2): 92-106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486925

RESUMO

Pollinators are critical for agricultural production and food security, leading to many ongoing surveys of pollinators (especially bees) in crop and adjacent landscapes. These surveys have become increasingly important to better understand the community of potential pollinators, quantify relative insect abundance, and secure crop ecosystem services. However, as some bee populations are declining, there is a need to align and improve bee survey efforts, so that they can best meet research and conservation goals, particularly in light of the logistical and financial constraints of conducting such studies. Here, we mined the existing literature on bee surveys in or around agricultural lands to better understand how sampling methods can be optimized to maximize estimates of 2 key measures of bee communities (abundance and richness). After reviewing 72 papers spanning 20 yr of publication, we found that study duration, number of sites, sampling time, and sampling method most significantly influenced abundance, while the number of trips per year and collection method significantly influenced richness. Our analysis helps to derive thresholds, priorities, and recommendations that can be applied to future studies describing bee communities in agroecosystems.

2.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723330

RESUMO

Exploration into reproductive quality in honey bees (Apis mellifera Linneaus (Hymenoptera: Apidae) largely focuses on factors that affect queens, with drones primarily being considered insofar as they pass on effects of environmental stressors to the queen and subsequent offspring. In those studies that consider drone quality explicitly, a primary focus has been on the dimorphic nature of drones laid in worker cells (either through rare queen error or worker reproduction) as compared to drones laid by the queen in the slightly larger drone cells. The implication from these studies is that that there exists a bimodality of drone morphological quality that is related to reproductive quality and competitive ability during mating. Our study quantifies the presence of such small drones in commercial populations, finding that rates of 'low-quality' drones are far higher than theoretically predicted under optimum conditions. Observations from commercial colonies also show significant inter-colony variation among the size and fecundity of drones produced, prompting speculation as to the mechanisms inducing such variation and the potential use of drone-quality variation for the colony- or apiary-level exposure to nutrition, agrichemical, or parasitic stressors.


Assuntos
Abelhas , Animais , Masculino , Reprodução , Estados Unidos
3.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723331

RESUMO

Honey bee larvae are dependent on the social structure of colony for their provisioning and survival. With thousands of larvae being managed collectively by groups of foragers (collecting food resources) and nurse bees (processing food and provisioning larvae), coordination of colony efforts in rearing brood depends on multiple dynamic cues of larval presence and needs. Much of these cues appear to be chemical, with larvae producing multiple pheromones, major being brood ester pheromone (BEP; nonvolatile blend of fatty acid esters) that elicits both short-term releaser effects and long-term primer effects. While BEP can affect colony food collection and processing with the signaling of larval presence, it is unclear if BEP signals individual larval needs. To understand this aspect, in a series of experiments we manipulated larval feeding environment by depriving larvae from adult bee contact for 4-h period and examined (1) nurse bee interactions with contact-deprived and nondeprived larvae and larval extracts; (2) forager bee responses to contact-deprived and nondeprived larval extracts. We also characterized BEP of contact-deprived and nondeprived larvae. We found that nurse honey bees tend to aggregate more over contact-deprived larvae when compared with nondeprived larvae, but that these effects were not found in response to whole hexane extracts. Our analytical results suggest that BEP components changed in both quantity and quality over short period of contact deprivation. These changes affected foraging behavior, but did not appear to directly affect nursing behavior, suggesting that different chemical cues are involved in regulating nursing effort to individual larvae.


Assuntos
Abelhas , Sinais (Psicologia) , Larva , Feromônios , Estrutura Social , Animais , Comportamento Apetitivo
4.
PeerJ ; 10: e13859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935251

RESUMO

Background: Honey bee males (drones) exhibit life histories that enable a high potential for pre- or post-copulatory sperm competition. With a numerical sex ratio of ∼11,000 drones for every queen, they patrol flyways and congregate aerially to mate on the wing. However, colonies and in fact drones themselves may benefit from a relative lack of competition, as queens are highly polyandrous, and colonies have an adaptive advantage when headed by queens that are multiply mated. Previous research has shown that larger drones are more likely to be found at drone congregation areas, more likely to mate successfully, and obtain a higher paternity share. However, the reproductive quality and size of drones varies widely within and among colonies, suggesting adaptive maintenance of drone quality variation at different levels of selection. Methods: We collected drones from six colony sources over the course of five days. We paint marked and individually tagged drones after taking body measurements at emergence and then placed the drones in one of two foster colonies. Using an entrance cage, we collected drones daily as they attempted flight. We collected 2,420 drones live or dead, analyzed 1,891 for attempted flight, collected emergence data on 207 drones, and dissected 565 upon capture to assess reproductive maturity. We measured drone body mass, head width, and thorax width at emergence, and upon dissection we further measured thorax mass, seminal vesicle length, mucus gland length, sperm count, and sperm viability from the seminal vesicles. Results: We found that drones that were more massive at emergence were larger and more fecund upon capture, suggesting that they are of higher reproductive quality and therefore do not exhibit a trade-off between size and fecundity. However, smaller drones tended to attempt initial flight at a younger age, which suggests a size trade-off not with fecundity but rather developmental maturation. We conclude that smaller drones may take more mating flights, each individually with a lower chance of success but thereby increasing their overall fitness. In doing so, the temporal spread of mating attempts of a single generation of drones within a given colony increases colony-level chances of mating with nearby queens, suggesting an adaptive rationale for high variation among drone reproductive quality within colonies.


Assuntos
Reprodução , Sêmen , Abelhas , Masculino , Animais , Inseminação , Fertilidade , Espermatozoides
5.
Commun Biol ; 5(1): 141, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177754

RESUMO

Drone honey bees (Apis mellifera) are the obligate sexual partners of queens, and the availability of healthy, high-quality drones directly affects a queen's fertility and productivity. Yet, our understanding of how stressors affect adult drone fertility, survival, and physiology is presently limited. Here, we investigated sex biases in susceptibility to abiotic stressors (cold stress, topical imidacloprid exposure, and topical exposure to a realistic cocktail of pesticides). We found that drones (haploid males) were more sensitive to cold and imidacloprid exposure than workers (sterile, diploid females), but the cocktail was not toxic at the concentrations tested. We corroborated this lack of cocktail toxicity with in-hive exposures via pollen feeding. We then used quantitative proteomics to investigate protein expression profiles in the hemolymph of topically exposed workers and drones, and found that 34 proteins were differentially expressed in exposed drones relative to controls, but none were differentially expressed in exposed workers. Contrary to our hypothesis, we show that drones express surprisingly high baseline levels of putative stress response proteins relative to workers. This suggests that drones' stress tolerance systems are fundamentally rewired relative to workers, and susceptibility to stress depends on more than simply gene dose or allelic diversity.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Temperatura Baixa , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Fatores Sexuais , Estresse Fisiológico
6.
J Chem Ecol ; 36(4): 432-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20354895

RESUMO

The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.


Assuntos
Abelhas/química , Comportamento Animal/fisiologia , DNA Mitocondrial , Feromônios/química , Feromônios/fisiologia , África , Animais , Abelhas/genética , Análise Discriminante , Europa (Continente) , Cromatografia Gasosa-Espectrometria de Massas , Larva/química , Pólen , Sacarose
7.
Insects ; 11(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545194

RESUMO

The 2020 American Bee Research Conference (ABRC) was held on 9-10 January 2020 in conjunction with the annual convention of the American Beekeeping Federation Conference and Trade Show in Schaumburg, IL. Over the two-day conference, a total of 65 oral and poster presentations were given, representing work done from over 30 different research groups from throughout the United States and Canada. These proceedings contain the submitted abstracts for presentations given at the 2020 American Bee Research Conference.

8.
Insects ; 10(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626026

RESUMO

In the face of high proportions of yearly colony losses, queen health and fecundity has been a major focus of industry and research. Much of the reproductive quality of the queen, though, is a function of the mating success and quality of the drones (males). Many environmental factors can negatively impact drone semen quality, but little is known about factors that impact the drones' ability to successfully mate and deliver that semen, or how widely drones vary. In our study, we observed the daily variation in honey bee drone reproductive quality over time, along with a number of morphological traits. Drones were reared in cages in bank colonies, and 20 individuals were dissected and measured daily. The number of viable spermatozoa in the seminal vesicles was zero at emergence and reached an average maximum of 7.39 ± 0.19 million around 20 days of life. Decline in spermatozoa count occurred after day 30, though viability was constant throughout life, when controlling for count. Older drones had smaller wet weights, head widths, and wing lengths. We predict that this is likely due to sampling bias due to a differential lifespan among larger, more reproductively developed drones. Our study shows that drones are more highly variable than previously suggested and that they have a significant variation in reproductive physiology as a function of age.

9.
J Econ Entomol ; 101(6): 1749-55, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19133452

RESUMO

Fatty acid esters extractable from the surface of honey bee, Apis mellifera L. (Hymenoptera: Apidae), larvae, called brood pheromone, significantly increase rate of colony growth in the spring and summer when flowering plant pollen is available in the foraging environment. Increased colony growth rate occurs as a consequence of increased pollen intake through mechanisms such as increasing number of pollen foragers and pollen load weights returned. Here, we tested the hypothesis that addition of brood pheromone during the winter pollen dearth period of a humid subtropical climate increases rate of colony growth in colonies provisioned with a protein supplement. Experiments were conducted in late winter (9 February-9 March 2004) and mid-winter (19 January-8 February 2005). In both years, increased brood area, number of bees, and amount of protein supplement consumption were significantly greater in colonies receiving daily treatments of brood pheromone versus control colonies. Amount of extractable protein from hypopharyngeal glands measured in 2005 was significantly greater in bees from pheromone-treated colonies. These results suggest that brood pheromone may be used as a tool to stimulate colony growth in the southern subtropical areas of the United States where the package bee industry is centered and a large proportion of migratory colonies are overwintered.


Assuntos
Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Feromônios/farmacologia , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Clima , Suplementos Nutricionais , Comportamento Alimentar/efeitos dos fármacos , Umidade , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Texas
10.
Sci Rep ; 8(1): 7679, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769574

RESUMO

In honey bees and many other social insects, production of queens is a vital task, as colony fitness is dependent on queens. The factors considered by honey bee workers in selecting larvae to rear new queens during emergency queen rearing are poorly understood. Identifying these parameters is critical, both in an evolutionary and apicultural context. As female caste development in honey bees is dependent on larval diet (i.e. nutrition), we hypothesized that larval nutritional state is meticulously assessed and used by workers in selection of larvae for queen rearing. To test this hypothesis, we conducted a series of experiments manipulating the nutritional status of one day old larvae by depriving them of brood food for a four-hour period, and then allowing workers to choose larvae for rearing queens from nutritionally deprived and non-deprived larvae. We simultaneously investigated the role of genetic relatedness in selection of larvae for queen rearing. In all the experiments, significantly greater numbers of non-deprived larvae than deprived larvae were selected for queen rearing irrespective of genetic relatedness. Our results demonstrate that honey bees perceive the nutritional state of larvae and use that information when selecting larvae for rearing queens in the natural emergency queen replacement process.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/genética , Larva/fisiologia , Estado Nutricional , Reprodução , Seleção Genética , Animais , Feminino , Masculino , Comportamento Social
11.
PLoS One ; 6(2): e16785, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21347428

RESUMO

Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.


Assuntos
Abelhas , Comportamento Animal , Animais , Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento de Nidação/efeitos dos fármacos , Feromônios/farmacologia , Pólen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA