Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Appl Environ Microbiol ; 80(8): 2582-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532063

RESUMO

Alternaria alternata is a filamentous fungus that causes considerable loss of crops of economically important feed and food worldwide. It produces more than 60 different secondary metabolites, among which alternariol (AOH) and altertoxin (ATX) are the most important mycotoxins. We found that mycotoxin production and spore formation are regulated by light in opposite ways. Whereas spore formation was largely decreased under light conditions, the production of AOH was stimulated 2- to 3-fold. ATX production was even strictly dependent on light. All light effects observed could be triggered by blue light, whereas red light had only a minor effect. Inhibition of spore formation by light was reversible after 1 day of incubation in the dark. We identified orthologues of genes encoding the Neurospora crassa blue-light-perceiving white-collar proteins, a cryptochrome, a phytochrome, and an opsin-related protein in the genome of A. alternata. Deletion of the white-collar 1 (WC-1) gene (lreA) resulted in derepression of spore formation in dark and in light. ATX formation was strongly induced in the dark in the lreA mutant, suggesting a repressing function of LreA, which appears to be released in the wild type after blue-light exposure. In addition, light induction of AOH formation was partially dependent on LreA, suggesting also an activating function. A. alternata ΔlreA was still able to partially respond to blue light, indicating the action of another blue-light receptor system.


Assuntos
Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Micotoxinas/metabolismo , Fotorreceptores Microbianos/metabolismo , Metabolismo Secundário , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Alternaria/genética , Alternaria/efeitos da radiação , Escuridão , Deleção de Genes , Luz , Fotorreceptores Microbianos/genética , Esporos Fúngicos/efeitos da radiação
3.
Chemistry ; 20(36): 11463-70, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25056998

RESUMO

Altertoxins I-III, alterlosins I and II, alteichin (alterperylenol), stemphyltoxins I-IV, stemphyperylenol, stemphytriol, 7-epi-8-hydroxyaltertoxin I, and 6-epi-stemphytriol are mycotoxins derived from perylene quinone, for which the absolute configuration was not known. Electronic circular dichroism (ECD) spectra were calculated for these compounds and compared with measured spectra of altertoxins I-III, alteichin, and stemphyltoxin III and with reported Cotton effects. Specific rotations were calculated and compared with reported specific rotations. The absolute configuration of all the toxins, except for stemphyltoxin IV, could thus be determined. The validity of the assignment was high whenever reported ECD data were available for comparison, and the validity was lower when the assignment was based only on the comparison of calculated and reported specific rotations. ECD spectra are intrinsically different for toxins with a biphenyl substructure and for toxins derived from dihydroanthracene.


Assuntos
Alternaria/química , Micotoxinas/química , Perileno/análogos & derivados , Quinonas/química , Dicroísmo Circular , Modelos Moleculares , Conformação Molecular , Micotoxinas/isolamento & purificação , Perileno/isolamento & purificação , Teoria Quântica , Quinonas/isolamento & purificação
4.
Chem Res Toxicol ; 27(12): 2093-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25380456

RESUMO

The mycotoxin sterigmatocystin (STC) has an aflatoxin-like structure including a furofuran ring system. Like aflatoxin B1, STC is a liver carcinogen and forms DNA adducts after metabolic activation to an epoxide at the furofuran ring. In incubations of STC with human P450 isoforms, one monooxygenated and one dioxygenated STC metabolite were recently reported, and a GSH adduct was formed when GSH was added to the incubations. However, the chemical structures of these metabolites were not unambiguously elucidated. We now report that hepatic microsomes from humans and rats predominantly form the catechol 9-hydroxy-STC via hydroxylation of the aromatic ring. No STC-1,2-oxide and only small amounts of STC-1,2-dihydrodiol were detected in microsomal incubations, suggesting that epoxidation is a minor pathway compared to catechol formation. Catechol formation was also much more pronounced than furofuran epoxidation in the microsomal metabolism of 11-methoxysterigmatocystin (MSTC). In support of the preference of catechol formation, only trace amounts of the thiol adduct of the 1,2-oxides but large amounts of the thiol adducts of the 9-hydroxy-8,9-quinones were obtained when N-acetyl-l-cysteine was added to the microsomal incubations of STC and MSTC. In addition to hydroxylation at C-9, smaller amounts of 12c-hydroxylated, 9,12c-dihydroxylated, and 9,11-dihydroxylated metabolites were formed. Our study suggests that hydroxylation of the aromatic ring, yielding a catechol, represents a major and novel pathway in the oxidative metabolism of STC and MSTC, which may contribute to the toxic and genotoxic effects of these mycotoxins.


Assuntos
Catecóis/metabolismo , Esterigmatocistina/metabolismo , Animais , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Esterigmatocistina/análogos & derivados , Espectrometria de Massas em Tandem
5.
Chem Res Toxicol ; 27(2): 247-53, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24428710

RESUMO

The group of perylene quinone-type Alternaria toxins contains several congeners with epoxide groups, for example, altertoxin II (ATX II) and stemphyltoxin III (STTX III). Recent studies in our laboratory have disclosed that the epoxide moieties of ATX II and STTX III are reduced to alcohols in human colon Caco-2 cells, thereby resulting in the formation of altertoxin I (ATX I) and alteichin, respectively. In the present study, this pathway was demonstrated for ATX II in three other mammalian cell lines. Furthermore, the chemical reaction of this toxin with monothiols like glutathione could be shown, and the structures of the reaction products were tentatively elucidated by UV and mass spectrometry. Chemical reaction of ATX II with dithiols capable of forming five- and six-membered rings gave rise to ATX I, thus providing a clue for the molecular mechanism of the epoxide reduction pathway of ATX II. Both epoxide reduction and glutathione conjugation appear to attenuate, but not completely abolish, the genotoxicity of ATX II.


Assuntos
Benzo(a)Antracenos/farmacologia , Micotoxinas/farmacologia , Perileno/análogos & derivados , Acetilcisteína/química , Álcoois/metabolismo , Alternaria , Animais , Benzo(a)Antracenos/química , Células CACO-2 , Linhagem Celular , Cricetulus , Dano ao DNA , Compostos de Epóxi/metabolismo , Glutationa/química , Glutationa/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Micotoxinas/química , Oxirredução , Perileno/química , Perileno/metabolismo , Perileno/farmacologia , Compostos de Sulfidrila/química
6.
EFSA J ; 22(1): e8528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38205503

RESUMO

This statement provides scientific guidance on the information needed to support the risk assessment of the detoxification processes applied to products intended for animal feed in line with the acceptability criteria of the Commission Regulation (EU) 2015/786.

7.
EFSA J ; 20(4): e07227, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475165

RESUMO

The European Commission has asked the EFSA to evaluate the risk for animal health related to the presence of hydroxymethylfurfural (HMF) in honey bee feed. HMF is a degradation product of particular sugars and can be present in bee feed. HMF is of low acute toxicity in bees but causes increased mortality upon chronic exposure. A benchmark dose lower limit 10% (BMDL10) of 1.16 µg HMF per bee per day has been calculated from mortalities observed in a 20-day study and established as a Reference Point covering also mortality in larvae, drones and queens for which no or insufficient toxicity data were available. Winter bees have a much longer lifespan than summer bees and HMF shows clear time reinforced toxicity (TRT) characteristics. Therefore, additional Reference Point intervals of 0.21-3.1, 0.091-1.1 and 0.019-0.35 µg HMF/bee per day were calculated based on extrapolation to exposure durations of 50, 90 and 180 days, respectively. A total of 219 analytical data of HMF concentrations in bee feed from EU Member States and 88 from Industry were available. Exposure estimates of worker bees and larvae ranged between 0.1 and 0.48, and between 0.1 and 0.51 µg HMF/per day, respectively. They were well below the BMDL10 of 1.16 µg HMF/bee per day, and thus, no concern was identified. However, when accounting for TRT, the probability that exposures were below established reference point intervals was assessed to be extremely unlikely to almost certain depending on exposure duration. A concern for bee health was identified when bees are exposed to HMF contaminated bee feed for several months.

8.
EFSA J ; 20(9): e07524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177388

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed a decontamination process of fish oils and vegetable oils and fats to reduce the concentrations of dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, abbreviated together as PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) by adsorption to activated carbon. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed food business operator (FBO) were assessed for the efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and properties of the product. The limited information provided, in particular on the analysis of the samples before and after decontamination, did not allow the CONTAM Panel to conclude whether or not the proposed decontamination process is effective in reducing PCDD/Fs and DL-PCBs in the fish- and vegetable oils and fats. Although there is no evidence from the data provided that the decontamination process leads to detrimental changes in the nutritional composition of the fish- and vegetable oils, it is possible that the process could deplete some beneficial constituents (e.g. vitamins). Taken together, it was not possible for the CONTAM Panel to conclude that the decontamination process as proposed by the FBO is compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

9.
EFSA J ; 19(12): e07035, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34976165

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on an application for a detoxification process of groundnut press cake for aflatoxins by ammoniation. Specifically, it is required that the feed decontamination process is compliant with the acceptability criteria specified in the Commission Regulation (EU) 2015/786 of 19 May 2015. The CONTAM Panel assessed the data provided by the feed business operator with respect to the efficacy of the process to remove the contaminant from groundnut press cake batches and on information demonstrating that the process does not adversely affect the characteristics and the nature of the product. Although according to the literature the process may be able to reduce aflatoxin levels below the legal limits, the Panel concluded that the proposed decontamination process, on the basis of the experimental data submitted by the feed business operator, cannot be confirmed for compliance with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015. The Panel recommended sufficient sample testing before and after the process, under the selected conditions, to ensure that the process is reproducible and reliable and to demonstrate that the detoxification is not reversible. In addition, genotoxicity testing of extracts of the treated feedingstuff and of the identified degradation products would be necessary. Finally, information on the transfer rate of AFB1 to AFM1 excretion in milk for animals fed the ammoniated product, in comparison to the starting material and on the ammoniation process changes of the nutritional values of the feed material should be provided.

10.
Toxicol Lett ; 331: 75-81, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32434050

RESUMO

Fungi of the genus Alternaria infest many agricultural crops and produce numerous mycotoxins, of which altertoxin II (ATX II) is one of the most mutagenic metabolites. ATX II carries an epoxide group but the formation of DNA adducts has not been demonstrated to date. We report now that ATX II gives rise to two covalent adducts with guanine when incubated with DNA under cell-free conditions. These adducts were demonstrated by LC-high resolution MS after enzymatic degradation of the incubated DNA to deoxynucleosides. The major adduct results from the covalent binding of ATX II, presumably through the epoxide group, to guanine, whereas the minor guanine adduct is derived from the major one by the elimination of two equivalents of water. In addition, a third adduct was detected, formed through covalent binding of ATX II to cytosine followed by the loss of two equivalents of water. The direct DNA reactivity of ATX II may explain its high mutagenicity.


Assuntos
Benzo(a)Antracenos/toxicidade , Adutos de DNA/análise , DNA/química , Guanina/química , Mutagênicos/toxicidade , Alternaria/química , Animais , Benzo(a)Antracenos/isolamento & purificação , Cromatografia Líquida , DNA/isolamento & purificação , Masculino , Espectrometria de Massas , Salmão , Testículo
11.
EFSA J ; 18(5): e06113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-37649524

RESUMO

The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 µg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 µg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.

12.
Food Chem Toxicol ; 131: 110599, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31247258

RESUMO

This paper describes a methodology for hazard assessment of groups of related substances for which toxicity data are insufficient, and which utilises, next to conventional toxicological assessments and mechanistic information, the derivation of relative toxicity potency factors (RPFs). Zearalenone (ZEN) and T-2 toxin (T2) and HT-2 toxin (HT2) and their modified forms have been used as examples. A tolerable daily intake (TDI) for ZEN of 0.25 µg/kg bw was established. In vitro and in vivo studies suggested that modified forms of ZEN act via the same mode of action as ZEN (oestrogenicity). Results from in vivo uterotrophic assays were used to establish RPFs, allowing inclusion the different modified forms in a group TDI with ZEN. A TDI for the sum of T2/HT2 of 0.02 µg/kg bw per day and an acute reference dose (ARfD) of 0.3 µg/kg bw for the sum of T2/HT2 was established. In vitro studies show that phase I metabolites of T2/HT2 act via a similar mode of action as their parent compounds, namely protein synthesis inhibition with immune- and haematotoxicity. The phase I metabolites as well as conjugates of T2/HT2 and their phase I metabolites can be included in a group TDI with T2/HT2 applying RPFs.


Assuntos
Toxina T-2/análogos & derivados , Zearalenona/toxicidade , Animais , Estrogênios/toxicidade , Humanos , Nível de Efeito Adverso não Observado , Medição de Risco/métodos , Toxina T-2/toxicidade , Zearalenona/análogos & derivados
13.
EFSA J ; 17(4): e05662, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32626287

RESUMO

In 2016, the EFSA Panel on Contaminants in the Food Chain (CONTAM) published a scientific opinion on the acute health risks related to the presence of cyanogenic glycosides (CNGs) in raw apricot kernels in which an acute reference dose (ARfD) of 20 µg/kg body weight (bw) was established for cyanide (CN). In the present opinion, the CONTAM Panel concluded that this ARfD is applicable for acute effects of CN regardless the dietary source. To account for differences in cyanide bioavailability after ingestion of certain food items, specific factors were used. Estimated mean acute dietary exposures to cyanide from foods containing CNGs did not exceed the ARfD in any age group. At the 95th percentile, the ARfD was exceeded up to about 2.5-fold in some surveys for children and adolescent age groups. The main contributors to exposures were biscuits, juice or nectar and pastries and cakes that could potentially contain CNGs. Taking into account the conservatism in the exposure assessment and in derivation of the ARfD, it is unlikely that this estimated exceedance would result in adverse effects. The limited data from animal and human studies do not allow the derivation of a chronic health-based guidance value (HBGV) for cyanide, and thus, chronic risks could not be assessed.

14.
EFSA J ; 16(2): e05173, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625808

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process for fish meal. This process entails solvent (hexane) extraction of fish oil from fish meal to remove dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)) as well as dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs) followed by replacement with decontaminated fish oil. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. The data provided by the feed business operator were assessed with respect to the efficacy of the process, absence of solvent residues, and on information demonstrating that the process does not adversely affect the nature and characteristics of the product. According to data provided, the process was effective in removing PCDD/Fs and DL-PCBs by approximately 70% and NDL-PCBs by about 60%. The data showed that it is possible to meet the current EU requirements with respect to these contaminants, provided that the level of contamination of untreated fish meal is within the range of the tested batches. It is unlikely that hazardous substances (i.e. hexane) remain in the final product. The Panel considered that there is no evidence that fish oil extraction followed by replacement with decontaminated fish oil leads to detrimental changes in the nutritional composition of the fish meal, although some beneficial constituents (e.g. lipophilic vitamins) might be depleted. The feed business operator submitted information to demonstrate safe disposal of the waste material. The CONTAM Panel concluded that the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from fish meal by means of solvent extraction and fish oil replacement was assessed to be compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

15.
EFSA J ; 16(2): e05174, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625809

RESUMO

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on the assessment of a decontamination process of fish meal. It consisted of extraction of the fish oil, filtration and adsorption with activated carbon, and replacement with decontaminated fish oil in order to reduce the amount of dioxins (polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)), and dioxin-like (DL-) and non-dioxin-like (NDL-) polychlorinated biphenyls (PCBs). All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed business operator were assessed for efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and the nature of the product. The process was effective in removing PCDD/Fs (97%) and DL- and NDL-PCBs (93%). The fish meal produced complied with EU regulations for these contaminants. The Panel considered that the reference to information available in published literature was a pragmatic approach to demonstrate that the replacement of fish oil and the use of activated carbon to adsorb these contaminants does not lead to any detrimental changes in the nature of the fish meal. However, it was noted that the process could deplete some beneficial constituents (e.g. oil-soluble vitamins). Information was provided to demonstrate the safe disposal of the waste material. The CONTAM Panel concluded that on the basis of the information submitted by the feed business operator the proposed decontamination process to remove dioxins (PCDD/Fs) and PCBs from the fish meal by oil extraction followed by replacement with decontaminated fish oil, was compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

16.
EFSA J ; 16(2): e05172, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32625807

RESUMO

The EFSA Panel on Contaminants in the Food Chain (CONTAM) established a tolerable daily intake (TDI) for fumonisin B1 (FB 1) of 1.0 µg/kg body weight (bw) per day based on increased incidence of megalocytic hepatocytes found in a chronic study with mice. The CONTAM Panel considered the limited data available on toxicity and mode of action and structural similarities of FB 2-6 and found it appropriate to include FB 2, FB 3 and FB 4 in a group TDI with FB 1. Modified forms of FBs are phase I and phase II metabolites formed in fungi, infested plants or farm animals. Modified forms also arise from food or feed processing, and include covalent adducts with matrix constituents. Non-covalently bound forms are not considered as modified forms. Modified forms of FBs identified are hydrolysed FB 1-4 (HFB 1-4), partially hydrolysed FB 1-2 (pHFB 1-2), N-(carboxymethyl)-FB 1-3 (NCM-FB 1-3), N-(1-deoxy-d-fructos-1-yl)-FB 1 (NDF-FB 1), O-fatty acyl FB 1, N-fatty acyl FB 1 and N-palmitoyl-HFB 1. HFB 1, pHFB 1, NCM-FB 1 and NDF-FB 1 show a similar toxicological profile but are less potent than FB 1. Although in vitro data shows that N-fatty acyl FBs are more toxic in vitro than FB 1, no in vivo data were available for N-fatty acyl FBs and O-fatty acyl FBs. The CONTAM Panel concluded that it was not appropriate to include modified FBs in the group TDI for FB 1-4. The uncertainty associated with the present assessment is high, but could be reduced provided more data are made available on occurrence, toxicokinetics and toxicity of FB 2-6 and modified forms of FB 1-4.

17.
Mol Nutr Food Res ; 51(7): 867-71, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17579896

RESUMO

The estrogenic mycotoxin zearalenone (ZEN) is known to get metabolized to the alpha-and beta-isomers of zearalenol, but no hydroxylation products of ZEN have yet been reported as metabolites in animals or humans. We have therefore incubated ZEN with microsomes from rat liver in the presence of a nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH)-regenerating system and analyzed the extracted metabolites with HPLC and GC-MS after trimethylsilylation. A total of 17 in vitro metabolites were observed. The two major metabolites were tentatively identified as monohydroxylated ZEN with the newly introduced hydroxyl group localized in the aliphatic macrocyclic ring. According to the GC-MS analysis, other six monohydroxylation products of ZEN were formed as minor metabolites, together with alpha-and beta-zearalenol and monohydroxylated zearalenols. Thus, ZEN has a considerable propensity for undergoing metabolic hydroxylation reactions in vitro, and the in vivo formation and biological properties of such oxidative metabolites should now be studied.


Assuntos
Estrogênios não Esteroides/metabolismo , Zearalenona/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Masculino , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Oxirredução , Ratos , Ratos Wistar , Zeranol/análogos & derivados , Zeranol/metabolismo
18.
Mol Nutr Food Res ; 51(8): 932-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17628876

RESUMO

Glucuronidation is an important pathway in the metabolism of curcumin, but the isoforms of uridine-5'-diphosphoglucuronosyltransferase (UGT) involved are not known. Here, we report on the glucuronidation of the three natural curcuminoids and their major phase I metabolites with microsomes from human liver and intestine as well as with human recombinant UGTs. Microsomes from human liver generated predominantly the phenolic and small amounts of the alcoholic glucuronide of each curcuminoid, whereas intestinal microsomes formed only the phenolic conjugates but with higher activities. The phenolic glucuronidation of the curcuminoids was predominantly catalyzed by hepatic UGT1A1 and intestinal UGT1A8 and 1A10, whereas UGT1A9, 2B7, and 1A8 exhibited high activities for hexahydro-curcuminoids. UGT1A9 was able to form the alcoholic glucuronide of each curcuminoid in addition to the phenolic conjugate. These data suggest that the gastrointestinal tract contributes substantially to the glucuronidation of curcuminoids in humans, which may have important implications for their pharmacokinetic fate in vivo.


Assuntos
Curcumina/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Intestinos/ultraestrutura , Microssomos Hepáticos/metabolismo , Microssomos/metabolismo , Feminino , Humanos , Isoenzimas/metabolismo , Masculino , Proteínas Recombinantes/metabolismo
19.
Mol Nutr Food Res ; 51(3): 307-16, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17340575

RESUMO

The Alternaria toxins alternariol (AOH; 3,7,9-trihydroxy-1-methyl-6H-benzo[c]chromen-6-one) and alternariol methyl ether (AME, 3,7-dihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one) are common contaminants of food and feed, but their oxidative metabolism in mammals is as yet unknown. We have therefore incubated AME and AOH with microsomes from rat, human, and porcine liver and analyzed the microsomal metabolites with HPLC and GC-MS/MS. Seven oxidative metabolites of AME and five of AOH were detected. Their chemical structures were derived from their mass spectra using deuterated trimethylsilyl (TMS) derivatives, and from the information obtained from enzymatic methylation. Several of the metabolites were identified by comparison with synthetic reference compounds. AME as well as AOH were monohydroxylated at each of the four possible aromatic carbon atoms and also at the methyl group. In addition, AME was demethylated to AOH and dihydroxylated to a small extent. As the four metabolites arising through aromatic hydroxylation of AME and AOH are either catechols or hydroquinones, the oxidative metabolism of these mycotoxins may be of toxicological significance.


Assuntos
Lactonas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxilação , Técnicas In Vitro , Masculino , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Suínos
20.
J Agric Food Chem ; 55(2): 538-44, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-17227090

RESUMO

Curcumin is of current interest because of its putative anti-inflammatory, anticarcinogenic, and anti-Alzheimer's activity, but its pharmacokinetic and metabolic fate is poorly understood. The present in vitro study has therefore been conducted on the glucuronidation of curcumin and its major phase I metabolite, hexahydro-curcumin, as well as of various natural and artificial analogs. The predominant glucuronide generated by rat and human liver microsomes from curcumin, hexahydro-curcumin, and other analogs with a phenolic hydroxyl group was a phenolic glucuronide according to LC-MS/MS analysis. However, a second glucuronide carrying the glucuronic acid moiety at the alcoholic hydroxyl group was formed from the same curcuminoids, but not hexahydro-curcuminoids, by human microsomes. Curcuminoids without a phenolic hydroxyl group gave rise to the aliphatic glucuronide only. The phenolic glucuronides of curcuminoids, but not of hexahydro-curcuminoids, were rather lipophilic and, in part, unstable in aqueous solution, their stability depending strongly on the type of aromatic substitution. The phenolic glucuronide of curcumin and of its natural congeners, but not the parent compounds, clearly inhibited the assembly of microtubule proteins under cell-free conditions, implying chemical reactivity of the glucuronides. These novel properties of the major phase II metabolites of curcuminoids deserve further investigation.


Assuntos
Curcumina/metabolismo , Glucuronídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Curcumina/análogos & derivados , Curcumina/farmacologia , Humanos , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Proteínas dos Microtúbulos/efeitos dos fármacos , Proteínas dos Microtúbulos/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA