Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 63(1): 47-53, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22776449

RESUMO

Magnetic resonance imaging (MRI)-based morphometry provides in vivo evidence for macro-structural plasticity of the brain. Experiments on small animals using automated morphometric methods usually require expensive measurements with ultra-high field dedicated animal MRI systems. Here, we developed a novel deformation-based morphometry (DBM) tool for automated analyses of rat brain images measured on a 3-Tesla clinical whole body scanner with appropriate coils. A landmark-based transformation of our customized reference brain into the coordinates of the widely used rat brain atlas from Paxinos and Watson (Paxinos Atlas) guarantees the comparability of results to other studies. For cross-sectional data, we warped images onto the reference brain using the low-dimensional nonlinear registration implemented in the MATLAB software package SPM8. For the analysis of longitudinal data sets, we chose high-dimensional registrations of all images of one data set to the first baseline image which facilitate the identification of more subtle structural changes. Because all deformations were finally used to transform the data into the space of the Paxinos Atlas, Jacobian determinants could be used to estimate absolute local volumes of predefined regions-of-interest. Pilot experiments were performed to analyze brain structural changes due to aging or photothrombotically-induced cortical stroke. The results support the utility of DBM based on commonly available clinical whole-body scanners for highly sensitive morphometric studies on rats.


Assuntos
Encefalopatias/patologia , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Anatômicos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Animais , Simulação por Computador , Aumento da Imagem/métodos , Projetos Piloto , Linguagens de Programação , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
2.
MAGMA ; 25(3): 233-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22042538

RESUMO

OBJECT: To investigate the potential of a clinical 3 T scanner to perform MRI of small rodents. MATERIALS AND METHODS: Different dedicated small animal coils and several imaging sequences were evaluated to optimize image quality with respect to SNR, contrast and spatial resolution. As an application, optimal grey-white-matter contrast and resolution were investigated for rats. Furthermore, manganese-enhanced MRI was applied in mice with unilateral crush injury of the optic nerve to investigate coil performance on topographic mapping of the visual projection. RESULTS: Differences in SNR and CNR up to factor 3 and more were observed between the investigated coils. The best grey-white matter contrast was achieved with a high resolution 3D T (2)-weighted TSE (SPACE) sequence. Delineation of the retino-tectal projection and detection of defined visual pathway damage on the level of the optic nerve could be achieved by using a T (1)-weighted, 3D gradient echo sequence with isotropic resolution of (0.2 mm)(3). CONCLUSIONS: Experimental studies in small rodents requiring high spatial resolution can be performed by using a clinical 3 T scanner with appropriate dedicated coils.


Assuntos
Encéfalo/patologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/veterinária , Imagem Corporal Total/instrumentação , Imagem Corporal Total/veterinária , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Aumento da Imagem/instrumentação , Camundongos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Chemphyschem ; 11(13): 2951-6, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20715271

RESUMO

Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.


Assuntos
Cianetos/química , Membranas Artificiais , Paládio/química , Eletroquímica , Eletrodos , Ouro/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA