Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(7): 4986-4995, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709693

RESUMO

Activation of [FeCl(dppe)Cp] (1) by chloride abstraction with Na[BArX4] (X = F, [B(3,5-(CF3)2-C6H3)4]; X = Cl, [B(3,5-Cl2-C6H3)4]) permits reactions with a range of nitro aromatics, RC6H4NO2 (R = halogen, Me, OMe, NO2 or NMe2), to give the cationic iron nitroso complexes [Fe{N(O)-C6H4R}(dppe)Cp][BArX4]) ([3][BArX4]). Similar reactions of 1 and Na[BArX4] with [Fe(NCC6H4NO2)(dppe)Cp][BArX4] gave bimetallic [{Fe(dppe)Cp}2{µ-N≡CC6H4N(O)}][BArF4]2. However, reactions of 1 and Na[BArX4] with 4-nitrophenol gave the first example of the bench-stable iron half-sandwich phenolate complex [Fe(OC6H4NO2)(dppe)Cp]+ rather than NO2 activation. The formation of complexes [3]+ likely proceeds via the unusual blue bimetallic species [{Fe(dppe)Cp}2{µ,κ2O,O'-O2NAr}]2+. This compound undergoes N-O bond cleavage, resulting in [3]+ and a FeIV═O species, which reacts via an internal C-H activation of the dppe ligand to give [FeIII(κ3O,P,P'-P(2-O-C6H4)(Ph)-C2H4-PPh2)Cp]+. Complexes [3]+ are stable under ambient conditions, are readily purified by column chromatography and can be isolated in up to 50% yield, considering that 0.5 equiv of 1 is required as the oxygen acceptor.

2.
Angew Chem Int Ed Engl ; 59(21): 8089-8093, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31943578

RESUMO

A mixed-valence {MnII 3 MnIII FeII 2 FeIII 2 } cyanide-bridged molecular cube hosting a caesium cation, Cs⊂{Mn4 Fe4 }, was synthesized and structurally characterized by X-ray diffraction. Cyclic-voltammetry measurements show that its electronic state can be switched between five different redox states, which results in a remarkable electrochromic effect. Magnetic measurements on fresh samples point to the occurrence of a spin-state change near room temperature, which could be ascribed to a metal-to-metal electron transfer converting the {FeII -CN-MnIII } pair into a {FeIII -CN-MnII } pair. This feature was only previously observed in the polymeric MnFe Prussian-blue analogues (PBAs). Moreover, this novel switchable molecule proved to be soluble and stable in organic solvents, paving the way for its integration into advanced materials.

3.
Inorg Chem ; 54(4): 1791-9, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25590643

RESUMO

We focus here on the properties of Fe complexes formed with Schiff bases involved in the chemistry of Fe(III) spin-transition archetypes. The neutral Fe(pap-5NO2)2 (1) and Fe(qsal-5NO2)2·Solv (2 and 2·Solv) compounds (Solv = 2H2O) derive from the reaction of Fe(II) salts with the condensation products of pyridine-2-carbaldehyde with 2-hydroxy-5-nitroaniline (Hpap-5NO2) or 5-nitrosalicylaldehyde with quinolin-8-amine (Hqsal-5NO2), respectively. While the Fe(qsal-5NO2)2·Solv solid is essentially low spin (S = 0) and requires temperatures above 300 K to undergo a S = 0 ↔ S = 2 spin-state switching, the Fe(pap-5NO2)2 one presents a strongly cooperative first-order transition (T↓ = 291 K, T↑ = 308 K) centered at room temperature associated with a photomagnetic effect at 10 K (TLIESST = 58 K). The investigation of these magnetic behaviors was conducted with single-crystal X-ray diffraction (1, 100 and 320 K; 2, 100 K), Mössbauer, IR, UV-vis (1 and 2·Solv), and differential scanning calorimetry (1) measurements. The Mössbauer analysis supports a description of these compounds as Fe(II) Schiff-base complexes and the occurrence of a metal-centered spin crossover process. In comparison with Fe(III) analogues, it appears that an expanded coordination sphere stabilizes the valence 2+ state of the Fe ion in both complexes. Strong hydrogen-bonding interactions that implicate the phenolato group bound to Fe(II) promote the required extra-stabilization of the S = 2 state and thus determines the spin transition of 1 centered at room temperature. In the lattice, the hydrogen-bonded sites form infinite chains interconnected via a three-dimensional network of intermolecular van der Waals contacts and π-π interactions. Therefore, the spin transition of 1 involves the synergetic influence of electrostatic and elastic interactions, which cause the enhancement of cooperativity and result in the bistability at room temperature.

4.
Chem Commun (Camb) ; 56(73): 10770, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930315

RESUMO

Correction for 'Thermo- and electro-switchable Cs⊂{Fe4-Fe4} cubic cage: spin-transition and electrochromism' by Jana Glatz et al., Chem. Commun., 2020, DOI: 10.1039/d0cc04279j.

5.
Chem Commun (Camb) ; 56(74): 10950-10953, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32797123

RESUMO

A mixed valence Cs⊂{Fe4-Fe4} cyanido-cube was synthesized and structurally characterized. The molecule, which is robust in solution, shows remarkable electronic versatility. Electrochromic properties associated with nine different electronic states are observed in solution together with a thermo-induced spin-transition in the solid state.

6.
PLoS One ; 11(7): e0159972, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27463379

RESUMO

Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 µm, 0.2 µm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45µm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters.


Assuntos
Silicatos de Alumínio/química , Sedimentos Geológicos/química , Solo/química , Áreas Alagadas , Álcalis/análise , Brasil , Argila , Metais/análise
7.
Inorg Chem ; 45(20): 8126-35, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16999410

RESUMO

The synthesis and detailed study of the new mononuclear spin crossover complex [Fe(II)H2L(2-Me)](ClO4)2 (where H2L(2-Me) = bis[((2-methylimidazol-4-yl)methylidene)-3-aminopropyl]ethylenediamine) are reported. Variable-temperature magnetic susceptibility measurements show the occurrence of a steep spin crossover centered at 171.5 K with a hysteresis loop of ca. 5 K width (T(/2)(increasing) = 174 K and T(1/2)(decreasing) = 169 K, for increasing and decreasing temperatures, respectively). The crystal structure has been resolved for the high-spin (HS) and low-spin (LS) states at 200 and 123 K, respectively, revealing a crystallographic phase transition that occurs concomitantly to the spin crossover: at 200 K, the complex crystallizes in the monoclinic system, space group P2(1)/n, while the space group is P2(1) at 123 K. The mean Fe-N distances are shortened by 0.2 A, but the thermal spin crossover is accompanied by significant structural changes: the rearrangement of the central atom C12 of a six-membered chelate ring of [Fe(II)H2L(2-Me)]2+ to two positions (C12A and C12B) and, consequently, the lack of an inversion center at 123 K (P2(1) space group). Both HS and LS supramolecular structures involve all possible hydrogen bonds between imidazole and amine NH functions, and perchlorate anions; however, the HS supramolecular structure is a one-dimensional (1D) network, and the LS phase may better be described as a two-dimensional (2D) extended structure of A and B molecules. The structural phase transition of [FeH2L(2-Me)](ClO4)2 seems to trigger the steep and hysteretic spin crossover. Discontinuities in the temperature dependence of the Mössbauer parameters (isomer shift and quadrupole splitting) at the spin crossover temperature confirmed the occurrence of a structural phase transition. The experimental enthalpy and entropy variations were determined by differential scanning calorimetry (DSC) as 7.5 +/- 0.4 kJ/mol and 45 +/- 3 J K(-1) mol(-1), respectively. The regular solution theory was applied to the experimental data, yielding an interaction parameter of Gamma = 3.36 kJ/mol, which is larger than 2RT(1/2), which fulfills the condition for observing hysteresis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA