Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171334, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423335

RESUMO

Legume-based cropping increased the diversity of residues and rhizodeposition input into the soil, thus affecting soil organic matter (SOM) stabilization. Despite this, a comprehensive understanding of the mechanisms governing SOM mineralization and its temperature sensitivity across bulk soil and aggregate scales concerning legume inclusion remains incomplete. Here, a 6-year field experiment was conducted to investigate the effects of three cropping systems (i.e., winter wheat/summer maize, winter wheat/summer maize-soybean, and nature fallow) on SOM mineralization, its temperature sensitivity, and the main drivers in both topsoil (0-20 cm) and subsoil (20-40 cm). Soybean inclusion decreased the SOM mineralization by 17%-24%, while concurrently increasing the majority of soil biochemical properties, such as carbon (C) acquisition enzyme activities (5%-22%) and microbial biomass C (5%-9%), within the topsoil regardless of temperature. This is attributed to the increased substrate availability (e.g., dissolved organic C) facilitating microbial utilization, thus devoting less energy to mining nutrients under diversified cropping. In addition, SOM mineralization was lower within macroaggregates (∼12%), largely driven by substrate availability irrespective of aggregate sizes. In contrast, diversified cropping amplified the Q10 of SOM mineralization in mesoaggregates (+6%) and microaggregates (+5%) rather than in macroaggregates. This underscores the pivotal role of mesoaggregates and microaggregates in dominating the Q10 of SOM mineralization under soybean-based cropping. In conclusion, legume-based cropping diminishes soil organic matter mineralization despite increasing its temperature sensitivity, which proposes a potential strategy for C-neutral agriculture and climate warming mitigation.


Assuntos
Fabaceae , Solo , Solo/química , Glycine max , Temperatura , Agricultura , Verduras , Carbono , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA