RESUMO
The superiority of the sandwich over a single aptamer based aptasensor assay for the detection of the human epidermal growth factor receptor 2 (HER2) is demonstrated for the first time. Cobalt tris-3,5 dimethoxy-phenoxy pyridine (5) oxy (2)- carboxylic acid phthalocyanine (CoMPhPyCPc) and sulphur/nitrogen doped graphene quantum dots (SNGQDs) and cerium oxide nanoparticles (CeO2NPs) nanocomposite (SNGQDs@CeO2NPs) were used for electrode modification of glassy carbon electrode (GCE) both individually and combined to form the substrates: GCE/SNGQDs@CeO2NPs, GCE/CoMPhPyCPc and GCE/SNGQDs@CeO2NPs/CoMPhPyCPc. The designed substrates were used as immobilization platforms for the amino functionalized HB5 aptamer for the development of both single and sandwich aptasensor assays. A novel bioconjugate, made of the HB5 aptamer and nanocomposite (HB5-SNGQDs@CeO2NPs) was fabricated, and characterized using ultra-violet/visible, Fourier transform infrared, and Raman spectroscopies as well as scanning electron microscopy. HB5-SNGQDs@CeO2NPs was applied as a secondary aptamer in the design of novel sandwich assays towards the electrochemical detection of HER2. The performance of the designed aptasensors were evaluated using electrochemical impedance spectroscopy. The sandwich assay gave low limit of detection of 0.00088 pg/mL, high sensitivity of 773925 Ω pg-1mL, showed stability, and good precision in real samples towards HER2 detection.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Humanos , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Grafite/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Eletrodos , Limite de Detecção , Ouro/químicaRESUMO
The role of the biointerface design towards the development of an impedimetric biosensor for the electrochemical detection of human epidermal growth factor receptor 2 (HER2) is investigated. Two novel cobalt phthalocyanines: cobalt tetraphenyl acetic acid phthalocyanine and cobalt tetraphenyl propionic acid phthalocyanine are compared as signal amplifiers and immobilization platforms of the HB5 aptamer towards the electrochemical detection of HER2. In addition, the phthalocyanines are coupled with the metal based cerium oxide nanoparticles. The efficiency of each electrode modification step and the performance of the constructed aptasensors were assessed by impedance spectroscopy. The aptasensors showed very low limit of detection values (all less than 0.2 ng/mL) with high sensitivity and stability. Furthermore, the aptasensors showed very good performance even in human serum samples. Considering these results, the aptasensors demonstrate great potential for improved monitoring of human epidermal growth factor receptor 2 levels for the management of breast cancers.