Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 153: 109808, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102968

RESUMO

Selenium (Se), a trace element, is vital for the maintenance of cellular redox balance, thyroid hormone metabolism, inflammation, and immunity. Aeromonas hydrophila (A. hydrophila) is a common Gram-negative conditional pathogenic bacterium in fish culture, posing a serious threat to intensive aquaculture. Our study investigated the influence of dietary Se on the intestinal immune function of grass carp (Ctenopharyngodon idella) and the related regulatory mechanisms. The 2160 healthy juvenile grass carp (9.76 ± 0.005 g) were randomly assigned to 6 test groups of 6 replicates each, and fed graded selenomethionine (0.05, 0.20, 0.40, 0.61, 0.77, 0.98 mg Se/kg diet) for 70 days and then injected with A. hydrophila for a 6-day attack test. The results indicated that appropriate Se levels (0.40 mg/kg diet) alleviated intestinal damage caused by A. hydrophila and increased intestinal immune substances C3 and C4 levels as well as the activity of acid phosphatase (ACP) and lysozyme (LZ) (P > 0.05). Appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) decreased intestinal pro-inflammatory cytokines (IFN-γ2, IL-6, IL-12p35, IL-17 A F and IL-17D) mRNA levels (P > 0.05) and increased intestinal anti-inflammatory factors (TGF-ß1, IL-4/13A, IL-4/13B, IL-10 and IL-22) mRNA levels (P > 0.05) in juvenile grass carp. Further studies revealed that Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal endoplasmic reticulum stress (ERS)-related signaling pathway. Furthermore, we found that appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal autophagy in juvenile grass carp, which may be related to ULK1, Beclin 1, ATG5, ATG12, LC3, and P62. In conclusion, appropriate levels of Se can alleviate intestinal inflammation and inhibit ERS and autophagy in juvenile grass carp. A quadratic regression analysis of intestinal ACP and LZ also indicated that the Se requirements of juvenile grass carp were 0.59 and 0.51 mg/kg, respectively.


Assuntos
Aeromonas hydrophila , Ração Animal , Autofagia , Carpas , Dieta , Suplementos Nutricionais , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Intestinos , Selênio , Animais , Carpas/imunologia , Autofagia/efeitos dos fármacos , Aeromonas hydrophila/fisiologia , Dieta/veterinária , Selênio/farmacologia , Selênio/administração & dosagem , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Ração Animal/análise , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Doenças dos Peixes/imunologia , Suplementos Nutricionais/análise , Distribuição Aleatória , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Ecotoxicol Environ Saf ; 262: 115153, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348215

RESUMO

Ochratoxin A (OTA), a notorious pollutant widely present worldwide, seriously pollutes aquafeeds. This paper aims to explore the toxicity effects of OTA by the way of diet on the skin barrier in grass carp (Ctenopharyngodon idella). Results were shown as follows in the skin: (1) OTA increased the mRNA abundances of uptake transporter proteins (e.g., OAT3) and decreased efflux transporter proteins (e.g., ABCG2), which caused the accumulation of OTA in the skin of grass carp. (2) OTA upregulated the gene expression related to ROS production by enhancing the NOX (1, 2, 4) signaling pathway and decreased the ability to ROS elimination with downregulation of GPx1 (a,b), Trx by inhibiting the PGC1-α/Nrf2 signaling pathway, which caused oxidative damage to the skin. (3) OTA exacerbated apoptosis in the skin by upregulating the expression of apoptosis-related proteins mediated by ways of endoplasmic reticulum stress and mitochondrial apoptosis. Moreover, OTA down-regulated the mRNA and protein abundances of tight junction-related proteins by inhibiting the MLCK signaling pathway, which in turn disrupted the tight junctions. (4) OTA reduced the number of mucous cup cells and decreased f LZ activities and IgM contents, and finally down-regulated the mRNA abundances of mucin (2, 3), LEAP-2 (A, B), and ß-defensin (1, 2, 3), which in turn resulted in impairing skin chemical barrier. Moreover, based on the antimicrobial-related indexes (LZ activities and IgM contents), the OTA-safe upper doses were 814.827 and 813.601 µg/kg.

3.
J Sci Food Agric ; 103(3): 1172-1182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36085562

RESUMO

BACKGROUND: Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS: Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION: Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.


Assuntos
Carpas , Doenças dos Peixes , Animais , Aminoácidos , Ração Animal/análise , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/metabolismo , Mananas
4.
Ecotoxicol Environ Saf ; 225: 112786, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555717

RESUMO

The occurrence of immuno-compromised status in animals with zearalenone (ZEA) exposure may be a critical contributor to associated mucosal (gastrointestinal tract) diseases. However, it is difficult to assess the associated risks with limited reference data. This study comprehensively discussed the effects of ZEA on intestinal immune components, cytokines and molecular mechanism of juvenile grass carp infected with Aeromonas hydrophila. Specifically, the fish were fed six graded levels of dietary ZEA (0-2507 µg kg-1 diet) for 70 d. The results pointed out that the average residual amount of ZEA in the intestines increased with dose level after ZEA feeding. We further performed an infection assay using A. hydrophila. After 14 d, ZEA groups increased enteritis morbidity rate compared with controls. The acid phosphatase (ACP), lysozyme (LZ) activities and immunoglobulin M (IgM) content were significantly decreased in three intestinal segments. Furthermore, ZEA could reduce the transcription of ß-defensin-1, Hepcidin, liver expressed antimicrobial peptide 2A/2B (LEAP-2A/2B) and Mucin-2. We next confirmed the loss of these immune components accompanied by the invasion of the intestinal barrier by bacteria, as indicated by activation of the nuclear factor κB (NF-κB) and the expression of downstream cytokines. Notably, the phosphorylated target of rapamycin (TOR) plays an important role in regulating these genes, thus indicating a possible target caused by ZEA. In summary, the extensive inhibition of immune components by ZEA promotes the spread of pathogens, which may increase the possibility of intestinal mucosa exposure and the risk of transforming disease.


Assuntos
Carpas , Zearalenona , Aeromonas hydrophila , Animais , NF-kappa B/genética , Sirolimo , Zearalenona/toxicidade
5.
Int J Biol Macromol ; 254(Pt 3): 127050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37742887

RESUMO

Flavobacterium columnare (F. columnare) is one of the deadliest fish pathogens causing bacterial gill rot disease in various freshwater fish species globally. Tea polyphenols (TPs) are an inexpensive product extracted from tea that have received much attention as a feed additive in aquaculture. The current study was designed to investigate the underlying mechanisms and protective effects of dietary TPs against F. columnare-induced gill injury via suppression of oxidative stress, apoptosis, and inflammation in grass carp. TPs were not supplemented to the diet (control) and were supplemented at 40, 80, 120, 160 or 200 mg/kg diet. The feeding experiment was carried out for 60 days, followed by a 3-Day F. columnare challenge test. The results showed that 120 mg/kg TPs in the diet exerted the following five protective effects in fish gill: (1) control gill-rot disease and improved histopathology, (2) inhibit excessive apoptosis, (3) enhance the activity of antioxidant enzymes and upregulate related gene expression via the Nrf2/Keap1 pathway, (4) increase the activity of immune enzymes, And (5) mediate inflammatory cytokine gene expression via the JAK/STAT3 pathway. Taken together, dietary supplementation with TPs is a compelling approach to protect the gill function of fish against F. columnare.


Assuntos
Carpas , Doenças dos Peixes , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Brânquias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Inflamação , Apoptose , Chá
6.
Anim Nutr ; 16: 275-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371478

RESUMO

Vitamin E (VE) is an essential lipid-soluble vitamin that improves the fish flesh quality. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of VE on growth performance and flesh quality in sub-adult grass carp (Ctenopharyngodon idella). A total of 450 fish (713.53 ± 1.50 g) were randomly divided into six treatment groups (three replicates per treatment) and fed for nine weeks with different experimental diets (dietary lipid 47.8 g/kg) that contained different levels of VE (5.44, 52.07, 96.85, 141.71, 185.66, and 230.12 mg/kg diet, supplemented as dl-α-tocopherol acetate). Notably, the treatment groups that were fed with dietary VE ranging from 52.07 to 230.12 mg/kg diet showed improvement in the percent weight gain, special growth rate, and feed efficiency of grass carp. Moreover, the treatment groups supplemented with dietary VE level of 141.71, 185.66, and 230.12 mg/kg diet showed enhancement in crude protein, lipid, and α-tocopherol contents in the muscle, and the dietary levels of VE ranging from 52.07 to 141.71 mg/kg diet improved muscle pH24h and shear force but reduced muscle cooking loss in grass carp. Furthermore, appropriate levels of VE (52.07 to 96.85 mg/kg diet) increased the muscle polyunsaturated fatty acid content in grass carp. Dietary VE also increased the mRNA levels of fatty acid synthesis-related genes, including fas, scd-1, fad, elovl, srebp1, pparγ, and lxrα, and up-regulated the expression of SREBP-1 protein. However, dietary VE decreased the expression of fatty acid decomposition-related genes, including hsl, cpt1, acox1, and pparα, and endoplasmic reticulum stress-related genes, including perk, ire1, atf6, eif2α, atf4, xbp1, chop, and grp78, and down-regulated the expression of p-PERK, p-IRE1, ATF6, and GRP78 proteins. In conclusion, dietary VE increased muscle fatty acid synthesis, which may be partly associated with the alleviation of endoplasmic reticulum stress, and ultimately improves fish flesh quality. Moreover, the VE requirements for sub-adult grass carp (713.53 to 1590.40 g) were estimated to be 124.9 and 122.73 mg/kg diet based on percentage weight gain and muscle shear force, respectively.

7.
J Hazard Mater ; 469: 134005, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484660

RESUMO

Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.


Assuntos
Carpas , Brânquias , Animais , Brânquias/metabolismo , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Peixes/metabolismo , Imunidade Inata , Dieta/veterinária , Homeostase , Glucose/metabolismo , Ração Animal/análise
8.
Anim Nutr ; 16: 202-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362511

RESUMO

Bacterial pathogens destroy the structural integrity of functional organs in fish, leading to severe challenges in the aquaculture industry. Vitamin D3 (VD3) prevents bacterial infections and strengthens immune system function via vitamin D receptor (VDR). However, the correlation between VD3/VDR and the structural integrity of functional organs remains unclarified. This study aimed to investigate the influence of VD3 supplementation on histological characteristics, apoptosis, and tight junction characteristics in fish intestine during pathogen infection. A total of 540 healthy grass carp (257.24 ± 0.63 g) were fed different levels of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) for 70 d. Subsequently, fish were challenged with Aeromonas hydrophila, a pathogen that causes intestinal inflammation. Our present study demonstrated that optimal supplementation with VD3 (1) alleviated intestinal structural damage, and inhibited oxidative damage by reducing levels of oxidative stress biomarkers; (2) attenuated excessive apoptosis-related death receptor and mitochondrial pathway processes in relation to p38 mitogen-activated protein kinase signaling (P < 0.05); (3) enhanced tight junction protein expression by inhibiting myosin light chain kinase signaling (P < 0.05); and (4) elevated VDR isoform expression in fish intestine (P < 0.05). Overall, the results demonstrated that VD3 alleviates oxidative injury, apoptosis, and the destruction of tight junction protein under pathogenic infection, thereby strengthening pathogen defenses in the intestine. This finding supports the rationale for VD3 intervention as an essential practice in sustainable aquaculture.

9.
Food Chem X ; 19: 100752, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384144

RESUMO

The n6/n3 ratios improved meat quality of terrestrial animals, but alpha-linolenic acid/linoleic acid (ALA/LNA) ratios were rarely studied in aquatic animals. In this study, sub-adult grass carp (Ctenopharyngodon idella) were fed diets fed diets containing six varying ALA/LNA ratios (0.03, 0.47, 0.92, 1.33, 1.69, and 2.15) for 9 weeks and the total value of n3 + n6 (1.98) was kept constant for all six treatments. The results indicated optimal ALA/LNA ratio improved growth performance, changed fatty acid composition in grass carp muscle, and promoted glucose metabolism. Additionally, optimal ALA/LNA ratio improved chemical attributes by increasing crude protein and lipid contents, and technological attributes by increasing pH24h value and shear force in grass carp muscle. The signaling pathways related to fatty acid metabolism and glucose metabolism (LXRα/SREBP-1, PPARα, PPARγ, AMPK) might be responsible for these changes. Dietary optimal ALA/LNA ratio based on PWG, UFA and glucose contents was 1.03, 0.88 and 0.92, respectively.

10.
Aquat Toxicol ; 257: 106424, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863152

RESUMO

Aquafeeds are susceptible to contamination caused by aflatoxin B1 (AFB1). The gill of fish is an important respiratory organ. However, few studies have investigated the effects of dietary AFB1 exposure on gill. This study aimed to discuss the effects of AFB1 on the structural and immune barrier of grass carp gill. Dietary AFB1 increased reactive oxygen species (ROS) levels, protein carbonyl (PC) and malondialdehyde (MDA) contents, which consequently caused oxidative damage. In contrast, dietary AFB1 decreased antioxidant enzymes activities, relative genes expression (except MnSOD) and the contents of glutathione (GSH) (P < 0.05), which are partly regulated by NF-E2-related factor 2 (Nrf2/Keap1a). Moreover, dietary AFB1 caused DNA fragmentation. The relative genes of apoptosis (except Bcl-2, McL-1 and IAP) were significantly upregulated (P < 0.05), and apoptosis was likely upregulated through p38 mitogen-activated protein kinase (p38MAPK). The relative expressions of genes associated with tight junction complexes (TJs) (except ZO-1 and claudin-12) were significantly decreased (P < 0.05), and TJs were likely regulated by myosin light chain kinase (MLCK). Overall, dietary AFB1 disrupted the structural barrier of gill. Furthermore, AFB1 increased gill sensitivity to F. columnare, increased Columnaris disease and decreased the production of antimicrobial substances (P < 0.05) in grass carp gill, and upregulated the expression of genes involved with pro-inflammatory factors (except TNF-α and IL-8) and the pro-inflammatory response partly attributed to the regulation by nuclear factor κB (NF-κB). Meanwhile, the anti-inflammatory factors were downregulated (P < 0.05) in grass carp gill after challenge with F. columnare, which was partly attributed to the target of rapamycin (TOR). These results suggested that AFB1 aggravated the disruption of the immune barrier of grass carp gill after being challenge with F. columnare. Finally, the upper limit of safety of AFB1 for grass carp, based on Columnaris disease, was 31.10 µg/kg diet.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , NF-kappa B/metabolismo , Suplementos Nutricionais/análise , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Aflatoxina B1/toxicidade , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/farmacologia , Carpas/metabolismo , Brânquias/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Transdução de Sinais , Dieta/veterinária , Antioxidantes/metabolismo , Glutationa , Ração Animal/análise
11.
Antioxidants (Basel) ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35624670

RESUMO

Mannan oligosaccharides (MOS) are a type of functional oligosaccharide which have received increased attention because of their beneficial effects on fish intestinal health. However, intestinal structural integrity is a necessary prerequisite for intestinal health. This study focused on exploring the protective effects of dietary MOS supplementation on the grass carp's (Ctenopharyngodon idella) intestinal structural integrity (including tight junction (TJ) and adherent junction (AJ)) and its related signalling molecule mechanism. A total of 540 grass carp (215.85 ± 0.30 g) were fed six diets containing graded levels of dietary MOS supplementation (0, 200, 400, 600, 800 and 1000 mg/kg) for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila for 14 days. We used ELISA, spectrophotometry, transmission electron microscope, immunohistochemistry, qRT-PCR and Western blotting to determine the effect of dietary MOS supplementation on intestinal structural integrity and antioxidant capacity. The results revealed that dietary MOS supplementation protected the microvillus of the intestine; reduced serum diamine oxidase and d-lactate levels (p < 0.05); enhanced intestinal total antioxidant capacity (p < 0.01); up-regulated most intestinal TJ and AJ mRNA levels; and decreased GTP-RhoA protein levels (p < 0.01). In addition, we also found several interesting results suggesting that MOS supplementation has no effects on ZO-2 and Claudin-15b. Overall, these findings suggested that dietary MOS supplementation could protect intestinal ultrastructure, reduce intestinal mucosal permeability and maintain intestinal structural integrity via inhibiting MLCK and RhoA/ROCK signalling pathways.

12.
Front Immunol ; 13: 833455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401542

RESUMO

In this study, we have investigated the influence of vitamin A on gill barrier function of grass carp (Ctenopharyngodon idella) infected with Flavobacterium columnare. The fish were fed different concentrations of vitamin A diets for 10 weeks and then infected with F. columnare by immersion. We observed that optimal vitamin A significantly prevented gill rot morbidity in fish infected with F. columnare. Further investigations revealed that vitamin A boosted the gill immunity by increasing the contents of complements (C3 and C4), activities of acid phosphatase (ACP) and lysozyme, mRNAs of ß-defensin-1, liver-expressed antimicrobial peptide 2A and 2B (LEAP-2A and LEAP-2B), hepcidin, and anti-inflammatory cytokines like transforming growth factor ß1 (TGF-ß1), TGF-ß2, interleukin-10 (IL-10), and IL-11. It also enhanced the levels of various related signaling molecules including inhibitor protein κBα (IκBα), target of rapamycin (TOR), and ribosome protein S6 kinase 1 (S6K1) but downregulated the expression of pro-inflammatory cytokines including IL-1ß, IL-8, tumor necrosis factor α (TNF-α), and interferon γ2 (IFN-γ2) and related signaling molecules including nuclear factor κB p65 (NF-κB p65) (rather than NF-κB p52), IκB kinase ß (IKKß), IKKγ (rather than IKKα), eIF4E-binding protein 1 (4E-BP1), and 4E-BP2 mRNA levels in fish gills. In addition, dietary vitamin A markedly lowered the concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC), increased both the activities and mRNAs of copper/zinc superoxide dismutase (Cu/ZnSOD), MnSOD, glutathione transferases (GSTs), glutathione peroxidase (GPx), and glutathione reductase (GR) associated with upregulation of NF-E2-related factor 2 (Nrf2) mRNAs and downregulation of Kelch-like-ECH-associated protein (Keap1a) and Keap1b mRNAs. Moreover, vitamin A decreased the mRNAs of different apoptotic mediators [caspases 8, 9, 3 (rather than 7)] associated with downregulation of signaling molecule p38 mitogen-activated protein kinase (p38MAPK) mRNAs in fish gills. Besides, vitamin A promoted tight junction (TJ) complex mRNAs [including claudin-b, -c, -3, -7, -12, occludin, and zonula occludens-1 (ZO-1)] that have been linked to the downregulation of myosin light chain kinase (MLCK) signaling. Taken together, the current study demonstrated for the first time that vitamin A markedly enhanced gill health associated with immune modulation and physical barrier protection. Based on protecting fish against gill rot morbidity, ACP activity, and against lipid peroxidation, optimum vitamin A concentrations in on-growing grass carp (262-997 g) were found to be 1,991, 2,188, and 2,934 IU/kg diet, respectively.


Assuntos
Carpas , Brânquias , Ração Animal/análise , Animais , Carpas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais/análise , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Flavobacterium , Vitamina A/metabolismo
13.
Food Chem X ; 15: 100412, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211744

RESUMO

We studied the effects of conjugated linoleic acid (CLA) on the amount of nutrients, flavour substances, and healthcare fatty acids, the physicochemical properties, and the potential molecular mechanisms in the muscles of sub-adult grass carp (Ctenopharyngodon idella). Fish were fed graded levels of CLA (0.0, 3.1, 6.4, 9.6, 12.7, and 15.9 g/kg diets) for 60 days. Protein, glutamic acid, alanine, inosine monophosphate (IMP), eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3), and total CLA contents (p < 0.05) increased in CLA 3.1 âˆ¼ 12.7, 6.4 âˆ¼ 9.6, 6.4 âˆ¼ 9.6, 6.4 âˆ¼ 15.9, 3.1 âˆ¼ 9.6, 3.1 âˆ¼ 9.6, and 3.1 âˆ¼ 15.9 g/kg diet, respectively (p < 0.05). In addition, optimal CLA significantly increased pH24, shear force, collagen content, and myofibre density in the muscle (P < 0.05); however, it decreased myofibre diameter (p < 0.05). We concluded that 6-9 g/kg CLA in the diet could improve the flesh quality of sub-adult grass carp.

14.
J Hazard Mater ; 436: 129268, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739783

RESUMO

Ochratoxin A (OTA) is a common hazardous food contaminant that seriously endangers human and animal health. However, limited study is focused on aquatic animal. This research investigated the multiple biotoxicity of OTA on spleen (SP) and head kidney (HK) in grass carp and its related mechanism. Our data showed that, dietary supplemented with OTA above 1209 µg/kg caused histopathological damages by decreasing the number of lymphocytes and necrotizing renal parenchymal cells. Meanwhile, OTA caused oxidative damage and reduced the isoforms mRNAs transcripts of antioxidant enzymes (e.g., GPX1, GPX4, GSTO) partly due to suppressing NF-E2-related factor 2 (Nrf2). OTA triggered apoptosis through mitochondria and death receptor pathway potentially by p38 mitogen-activated protein kinase (p38MAPK) activation. Besides, OTA exacerbated inflammation by down-regulation of anti-inflammatory factor (e.g., IL-10, IL-4) and up-regulations of pro-inflammatory factors (e.g., TNF-α, IL-6), which could be ascribed to signaling meditation of Janus kinase / signal transducer and activator of transcription (JAK/STAT). Additionally, the safe upper limits of OTA were estimated to be 677.6 and 695.08 µg/kg based on the immune-related indexes (C3 contents in the SP and LZ activities in the HK, respectively). Our study has provided a wide insight for toxicological assessment of feed pollutant in aquatic animals.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/metabolismo , Ração Animal/análise , Animais , Apoptose , Carpas/metabolismo , Dieta , Proteínas de Peixes/metabolismo , Humanos , Imunidade Inata , Terapia de Imunossupressão , Ocratoxinas , Estresse Oxidativo
15.
J Appl Genet ; 58(3): 381-391, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28191600

RESUMO

Tumour necrosis factor alpha (TNF-α) is one kind of cytokines which is related to inflammation and lipid metabolism. TNF-α cDNA was cloned from the liver of blunt snout bream (Megalobrama amblycephala) through real-time polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methods. The full-length cDNA of TNF-α covered 1467 bp, with an open reading frame (ORF) of 723 bp, which encodes 240 amino acids. It possessed the TNF family signature IIIPDDGIYFVYSQ. After the lipopolysaccharide (LPS) challenge test, a graded tissue-specific expression pattern of TNF-α was observed and there was high expression abundance in the kidney, brain and liver. After 8 weeks feeding trial, liver samples, two groups fed with 6% and 11% lipid levels, were collected. The results showed that, for fish fed with high-fat diet, the triglyceride of serum and lipid content of liver were elevated. Furthermore, TNF-α and peroxisome proliferator-activated receptors (PPARα, ß) mRNA expression of fish fed 11% lipid diet were significantly up-regulated (p < 0.05). Lipoprotein lipase (LPL) and PPARγ mRNA expression of fish fed 11% lipid lever diet were significantly decreased compared to those of fish fed 6% (p < 0.05). The differences between the various expression of related genes in the high and low fat groups demonstrated that TNF-α played a key role in lipid metabolism, which may have an influence on fat metabolism through reducing fat synthesis and strengthening the ß-oxidation of fatty acid. These discrepancies warrant further research.


Assuntos
Cyprinidae/metabolismo , Metabolismo dos Lipídeos , Lipase Lipoproteica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Dieta Hiperlipídica , Fígado/metabolismo , Fases de Leitura Aberta , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA