Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Pathol ; 17: 2632010X241263054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070952

RESUMO

The COVID-19 pandemic-led worldwide healthcare crisis necessitates prompt societal, ecological, and medical efforts to stop or reduce the rising number of fatalities. Numerous mRNA based vaccines and vaccines for viral vectors have been licensed for use in emergencies which showed 90% to 95% efficacy in preventing SARS-CoV-2 infection. However, safety issues, vaccine reluctance, and skepticism remain major concerns for making mass vaccination a successful approach to treat COVID-19. Hence, alternative therapeutics is needed for eradicating the global burden of COVID-19 from developed and low-resource countries. Repurposing current medications and drug candidates could be a more viable option for treating SARS-CoV-2 as these therapies have previously passed a number of significant checkpoints for drug development and patient care. Besides vaccines, this review focused on the potential usage of alternative therapeutic agents including antiviral, antiparasitic, and antibacterial drugs, protease inhibitors, neuraminidase inhibitors, and monoclonal antibodies that are currently undergoing preclinical and clinical investigations to assess their effectiveness and safety in the treatment of COVID-19. Among the repurposed drugs, remdesivir is considered as the most promising agent, while favipiravir, molnupiravir, paxlovid, and lopinavir/ritonavir exhibited improved therapeutic effects in terms of elimination of viruses. However, the outcomes of treatment with oseltamivir, umifenovir, disulfiram, teicoplanin, and ivermectin were not significant. It is noteworthy that combining multiple drugs as therapy showcases impressive effectiveness in managing individuals with COVID-19. Tocilizumab is presently employed for the treatment of patients who exhibit COVID-19-related pneumonia. Numerous antiviral drugs such as galidesivir, griffithsin, and thapsigargin are under clinical trials which could be promising for treating COVID-19 individuals with severe symptoms. Supportive treatment for patients of COVID-19 may involve the use of corticosteroids, convalescent plasma, stem cells, pooled antibodies, vitamins, and natural substances. This study provides an updated progress in SARS-CoV-2 medications and a crucial guide for inventing novel interventions against COVID-19.

2.
Antivir Ther ; 29(3): 13596535241255199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801671

RESUMO

Background: Monkeypox has emerged as a noteworthy worldwide issue due to its daily escalating case count. This illness presents diverse symptoms, including skin manifestations, which have the potential to spread through contact. The transmission of this infectious agent is intricate and readily transfers between individuals.Methods: The hypothetical protein MPXV-SI-2022V502225_00135 strain of monkeypox underwent structural and functional analysis using NCBI-CD Search, Pfam, and InterProScan. Quality assessment utilized PROCHECK, QMEAN, Verify3D, and ERRAT, followed by protein-ligand docking, visualization, and a 100-nanosecond simulation on Schrodinger Maestro.Results: Different physicochemical properties were estimated, indicating a stable molecular weight (49147.14) and theoretical pI (5.62) with functional annotation tools predicting the target protein to contain the domain of Chordopox_A20R domain. In secondary structure analysis, the helix coil was found to be predominant. The three-dimensional (3D) structure of the protein was obtained using a template protein (PDB ID: 6zyc.1), which became more stable after YASARA energy minimization and was validated by quality assessment tools like PROCHECK, QMEAN, Verify3D, and ERRAT. Protein-ligand docking was conducted using PyRx 9.0 software to examine the binding and interactions between a ligand and a hypothetical protein, focusing on various amino acids. The model structure, active site, and binding site were visualized using the CASTp server, FTsite, and PyMOL. A 100 nanosecond simulation was performed with ligand CID_16124688 to evaluate the efficiency of this protein.Conclusion: The analysis revealed significant binding interactions and enhanced stability, aiding in drug or vaccine design for effective antiviral treatment and patient management.


Assuntos
Simulação de Acoplamento Molecular , Monkeypox virus , Proteínas Virais , Proteínas Virais/química , Proteínas Virais/metabolismo , Monkeypox virus/química , Simulação por Computador , Humanos , Ligantes , Ligação Proteica , Domínios Proteicos , Simulação de Dinâmica Molecular , Conformação Proteica , Modelos Moleculares , Relação Estrutura-Atividade , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA