Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
BMC Genomics ; 25(1): 689, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003448

RESUMO

BACKGROUND: The holothurians, commonly known as sea cucumbers, are marine organisms that possess significant dietary, nutritional, and medicinal value. However, the National Center for Biotechnology Information (NCBI) currently possesses only approximately 70 complete mitochondrial genome datasets of Holothurioidea, which poses limitations on conducting comprehensive research on their genetic resources and evolutionary patterns. In this study, a novel species of sea cucumber belonging to the genus Benthodytes, was discovered in the western Pacific Ocean. The genomic DNA of the novel sea cucumber was extracted, sequenced, assembled and subjected to thorough analysis. RESULTS: The mtDNA of Benthodytes sp. Gxx-2023 (GenBank No. OR992091) exhibits a circular structure spanning 17,386 bp, comprising of 13 protein-coding genes (PCGs), 24 non-coding RNAs (2 rRNA genes and 22 tRNA genes), along with two putative control regions measuring 882 bp and 1153 bp, respectively. It exhibits a high AT% content and negative AT-skew, which distinguishing it from the majority of sea cucumbers in terms of environmental adaptability evolution. The mitochondrial gene homology between Gxx-2023 and other sea cucumbers is significantly low, with less than 91% similarity to Benthodytes marianensis, which exhibits the highest level of homology. Additionally, its homology with other sea cucumbers is below 80%. The mitogenome of this species exhibits a unique pattern in terms of start and stop codons, featuring only two types of start codons (ATG and ATT) and three types of stop codons including the incomplete T. Notably, the abundance of AT in the Second position of the codons surpasses that of the First and Third position. The gene arrangement of PCGs exhibits a relatively conserved pattern, while there exists substantial variability in tRNA. Evolutionary analysis revealed that it formed a distinct cluster with B. marianensis and exhibited relatively distant phylogenetic relationships with other sea cucumbers. CONCLUSIONS: These findings contribute to the taxonomic diversity of sea cucumbers in the Elasipodida order, thereby holding significant implications for the conservation of biological genetic resources, evolutionary advancements, and the exploration of novel sea cucumber resources.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Pepinos-do-Mar , Animais , Pepinos-do-Mar/genética , RNA de Transferência/genética , Composição de Bases
2.
BMC Plant Biol ; 23(1): 399, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605165

RESUMO

The environment in Antarctica is characterized by low temperature, intense UVB and few vegetation types. The Pohlia nutans M211 are bryophytes, which are the primary plants in Antarctica and can thrive well in the Antarctic harsh environment. The transcriptional profiling of Pohlia nutans M211 under low temperature and high UVB conditions was analyzed to explore their polar adaptation mechanism in the extreme Antarctic environment by third-generation sequencing and second-generation sequencing. In comparison to earlier second-generation sequencing techniques, a total of 43,101 non-redundant transcripts and 10,532 lncRNA transcripts were obtained, which were longer and more accurate. The analysis results of GO, KEGG, AS (alternative splicing), and WGCNA (weighted gene co-expression network analysis) of DEGs (differentially expressed genes), combined with the biochemical kits revealed that antioxidant, secondary metabolites pathways and photosynthesis were the key adaptive pathways for Pohlia nutans M211 to the Antarctic extreme environment. Furthermore, the low temperature and strong UVB are closely linked for the first time by the gene HY5 (hlongated hypocotyl 5) to form a protein interaction network through the PPI (protein-protein interaction networks) analysis method. The UVR8 module, photosynthetic module, secondary metabolites synthesis module, and temperature response module were the key components of the PPI network. In conclusion, this study will help to further explore the polar adaptation mechanism of Antarctic plants represented by bryophytes and to enrich the polar gene resources.


Assuntos
Briófitas , Bryopsida , Antioxidantes , Regiões Antárticas , Fotossíntese , Briófitas/genética
3.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902109

RESUMO

κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.


Assuntos
Carragenina , Colite Ulcerativa , Microbioma Gastrointestinal , Compostos Organosselênicos , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/terapia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Carragenina/farmacologia , Carragenina/uso terapêutico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico
4.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762273

RESUMO

The previous study successfully established an expression strain of ζ-carotene-like compounds (CLC) and demonstrated its remarkable antioxidant activity, which exhibited resistance to photodamage caused by UVB radiation on the skin following gavage administration. The objective of this study was to investigate the impact and mechanism of CLC on UVB-induced skin damage through topical application. Cell viability, anti-apoptotic activity, ROS scavenging ability, the inhibition of melanin synthesis, the regulation of inflammatory factors and collagen deposition were assessed in cells and mice using qRT-PCR, WB, Elisa assays, immunohistochemistry staining and biochemical kits, etc. The experimental results demonstrated that CLC-mitigated apoptosis induced by UVB irradiation up-regulated the Keap1/Nrf2/ARE antioxidant pathway to attenuate levels of ROS and inflammatory factors (NF-κB, TNF-α, IL-6 and IL-ß), and suppressed MAPK/AP-1 and CAMP/PKA/CREB signaling pathways to mitigate collagen degradation, skin aging and melanin formation. In conclusion, this study underscored the potential of CLC as a safe and efficacious source of antioxidants, positioning it as a promising ingredient in the formulation of cosmetics targeting anti-aging, skin brightening and sunburn repair.

5.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894736

RESUMO

Although it is well recognized that mycosporine-like amino acids (MAAs) are ultraviolet (UV) protective agents that can reduce UV damage, the specific biological mechanism of its role in the skin remains unclear. In this study, we investigated the effect of MAAs extracted from Antarctic diatom Phaeodactylum tricornutum ICE-H on UVB-induced skin damage using a mice model. The MAAs components identified by liquid chromatography-tandem mass spectrometry included 4-deoxygadusol, shinorine, and porphyra-334, which were purified using a Supledean Carboxen1000 solid phase extraction column. The antioxidant activities of these MAA compounds were tested in vitro. For UVB-induced skin photodamage in mice, MAAs alleviated skin swelling and epidermal thickening in this study. We detected the content of reactive oxygen species (ROS), malondialdehyde, and collagen in skin tissue. In addition, quantitative real-time polymerase chain reaction was used to detect nuclear factor-κB (NF-κB), tumor necrosis factor α, interleukin-1ß, cyclooxygenase-2, mitogen activated protein kinase (MAPK) family (extracellular signal-regulated kinase, c-Jun amino-terminal kinase, and p38 kinase), and matrix metalloproteinases. The expression of these cytokines and enzymes is related to inflammatory responses and collagen degradation. In comparison to the model group without MAA treatment, the MAA component decreased the concentration of ROS, the degree of oxidative stress in the skin tissue, and the expression of genes involved in the NF-κB and MAPK pathways. In summary, these MAA components extracted from Phaeodactylum tricornutum ICE-H protected against UVB-induced skin damage by inhibiting ROS generation, relieving skin inflammation, and slowing down collagen degradation, suggesting that these MAA components are effective cosmetic candidate molecules for the protection and therapy of UVB damage.


Assuntos
Aminoácidos , Diatomáceas , Animais , Camundongos , Aminoácidos/química , Diatomáceas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Regiões Antárticas , Pele/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Colágeno/farmacologia , Raios Ultravioleta/efeitos adversos
6.
Mar Drugs ; 20(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447896

RESUMO

An immunomodulatory polysaccharide (DAP4) was extracted, purified, and characterized from Durvillaea antarctica. The results of chemical and spectroscopic analyses demonstrated that the polysaccharide was a fucoidan, and was mainly composed of (1→3)-α-l-Fucp and (1→4)-α-l-Fucp residues with a small degree of branching at C-3 of (1→4)-α-l-Fucp residues. Sulfate groups were at C-4 of (1→3)-α-l-Fucp, C-2 of (1→4)-α-l-Fucp and minor C-6 of (1→4)-ß-d-Galp. Small amounts of xylose and galactose exist in the forms of ß-d-Xylp-(1→ and ß-d-Gal-(1→. The immunomodulatory activity of DAP4 was measured on RAW 264.7 cells, the results proved that DAP4 exhibited excellent immunomodulatory activities, such as promoted the proliferation of spleen lymphocytes, increased NO production, as well as enhanced phagocytic of macrophages. Besides, DAP4 could also produce better enhancement on the vitality of NK cells. For the high immunomodulatory activity, DAP4 might be a potential source of immunomodulatory fucoidan with a novel structure.


Assuntos
Phaeophyceae , Sulfatos , Phaeophyceae/química , Polissacarídeos/química , Sulfatos/química
7.
Mar Drugs ; 20(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200621

RESUMO

Though the relationship between dietary fiber and physical health has been investigated widely, the use of dietary fiber from marine plants has been investigated relatively rarely. The Saccharina japonica byproducts after the production of algin contain a large amount of insoluble polysaccharide, which will cause a waste of resources if ignored. Soluble dietary fiber (SDF)prepared from waste byproducts of Saccharina japonica by alkaline hydrolysis method for the first time had a wrinkled microscopic surface and low crystallinity, which not only significantly reduced liver index, serum levels of aspartate aminotransferase (AST) and alanine amiotransferase (ALT), and liver fat accumulation damage to the livers of obese diabetic mice, but also activated the PI3K/AKT signaling pathway to increase liver glycogen synthesis and glycolysis. By LC-MS/MS employing a Nexera UPLC tandem QE high-resolution mass spectrometer, the 6 potential biomarker metabolites were screened, namely glycerophosphocholine (GPC), phosphocholine (PCho), pantothenic acid, glutathione (GSH), oxidized glutathione (GSSG), and betaine; several pathways of these metabolites were associated with lipid metabolism, glycogen metabolism, and amino acid metabolism in the liver were observed. This study further provided a detailed insight into the mechanisms of SDF from Saccharina japonica byproducts in regulating the livers of obese mice with type 2 diabetes and laid a reliable foundation for the further development and utilization of Saccharina japonica.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibras na Dieta/farmacologia , Laminaria/metabolismo , Fígado/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Feminino , Fígado/metabolismo , Camundongos , Camundongos Obesos , Espectrometria de Massas em Tandem
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499473

RESUMO

UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.


Assuntos
Desoxirribodipirimidina Fotoliase , Microalgas , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Dano ao DNA , Microalgas/metabolismo , NF-kappa B/genética , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta
9.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431814

RESUMO

The bioenzymatic production of selenium oligosaccharides addresses the problems resulting from high molecular weight and poor water solubility of κ-selenocarrageenan, and lays foundation for its application as adjuvant drugs for cancer treatment and food additive. κ-selenocarrageenase extracted from Pseudoalteromonas sp. Xi13 can degrade κ-selenocarrageenan to selenium oligosaccharides. The maximum optimized κ-selenocarrageenase activity using Response Surface Methodology (RSM) was increased by 1.4 times, reaching 8.416 U/mL. To expand applications of the κ-selenocarrageenase in industry, the preparation conditions of it in either lyophilized or immobilized form were investigated. The activity recovery rate of the lyophilized enzyme was >70%, while that of the immobilized enzyme was 62.83%. However, the immobilized κ-selenocarrageenase exhibits good stability after being reused four times, with 58.28% of residual activity. The selenium content of κ-selenocarrageenan oligosaccharides degraded by the immobilized κ-selenocarrageenase was 47.06 µg/g, 8.3% higher than that degraded by the lyophilized enzyme. The results indicate that the immobilized κ-selenocarrageenase is suitable for industrial applications and has commercial potential.


Assuntos
Compostos Organosselênicos , Pseudoalteromonas , Selênio , Carragenina
10.
J Basic Microbiol ; 60(7): 639-648, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378236

RESUMO

Dimethylsulfoniopropionate (DMSP) is widespread in the oceans, and its biological metabolite, dimethyl sulfide (DMS), plays an important role in the atmosphere. The Antarctic region has become a hotspot in DMS studies due to the high spatial and temporal variability in DMS(P) concentration, but the level of bacterial DMS production remains unclear. In this study, a bacterium isolated from Antarctic floating ice, Rhodococcus sp. NJ-530, was found to metabolize DMSP into DMS, and the rate of DMS production was measured as 3.96 pmol·mg protein-1 ·h-1 . Rhodococcus sp. NJ-530 had a DddD-Rh enzyme containing two CaiB domains, which belonged to the CoA-transferase III superfamily. However, the DddD-Rh had a molecular weight of 73.21 kDa, which was very different from previously characterized DddD enzymes in sequence and evolution. In vitro assays showed that DddD-Rh was functional in the presence of acetyl-CoA. This was the first functional DddD from Gram-positive Actinobacteria. Moreover, a quantitative real-time polymerase chain reaction revealed that high temperature facilitated the expression of dddD-Rh, and changes of salinity had little effect on it. This study adds new evidence to the bacterial DMS production in the Southern Ocean and provides a basis for investigating the metabolic mechanism of DMSP in extreme environments.


Assuntos
Coenzima A-Transferases/metabolismo , Rhodococcus/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Acetilcoenzima A/química , Regiões Antárticas , Coenzima A-Transferases/genética , Desmetilação , Temperatura
11.
BMC Plant Biol ; 18(1): 53, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614974

RESUMO

BACKGROUND: The ice alga Chlamydomonas sp. ICE-L is the main contributor to primary productivity in Antarctic sea ice ecosystems and is well adapted to the extremely harsh environment. However, the adaptive mechanism of Chlamydomonas sp. ICE-L to sea-ice environment remains unclear. To study the adaptive strategies in Chlamydomonas sp. ICE-L, we investigated the molecular evolution of chloroplast photosynthetic genes that are essential for the accumulation of carbohydrate and energy living in Antarctic sea ice. RESULTS: The 60 chloroplast protein-coding genes of Chlamydomonas sp. ICE-L were obtained, and the branch-site test detected significant signatures of positive selection on atpB, psaB, and rbcL genes in Chlamydomonas sp. ICE-L associated with the photosynthetic machinery. These positively selected genes were further identified as being under convergent evolution between Chlamydomonas sp. ICE-L and the halotolerant alga Dunaliella salina. CONCLUSIONS: Our study provides evidence that the phototrophic component of Chlamydomonas sp. ICE-L exhibits adaptive evolution under extreme environment. The positive Darwinian selection operates on the chloroplast protein-coding genes of Antarctic ice algae adapted to extreme environment following functional-specific and lineages-specific patterns. In addition, three positively selected genes with convergent substitutions in Chlamydomonas sp. ICE-L were identified, and the adaptive modifications in these genes were in functionally important regions of the proteins. Our study provides a foundation for future experiments on the biochemical and physiological impacts of photosynthetic genes in green algae.


Assuntos
Chlamydomonas/fisiologia , Cloroplastos/fisiologia , Regiões Antárticas , Chlamydomonas/metabolismo , Cloroplastos/metabolismo , Fotossíntese/fisiologia
12.
Extremophiles ; 21(4): 817-827, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28597046

RESUMO

Major intrinsic proteins (MIPs) form channels facilitating the passive transport of water and other small polar molecules across membranes. In this study, the complete open reading frame (ORF) of CiMIP1 (GenBank ID KY316061) encoding one kind of MIPs in the Antarctic ice microalga Chlamydomonas sp. ICE-L is successfully cloned using RACE. In addition, the expression patterns of CiMIP1 gene under different conditions of temperature and salinity are determined by qRT-PCR. The ORF of CiMIP1 gene encodes 308 amino acids, and the deduced amino acid sequence shows 74% homology with Chlamydomonas reinhardtii CrMIP1 (GenBank number 159471952). Phylogenetic analysis reveals that algal MIPs are divided into seven groups, and it is speculated that CiMIP1 most likely belongs to the MIPD subfamily. In addition, we are surprised to find that a third NPA motif exists at the carboxy terminus of the target protein except for two highly conserved ones. Expression analysis shows that the transcriptional levels of CiMIP1 gene are upregulated under either lower temperature or higher temperature and high salinity. In summary, the results together have provide new insights into the newly discovered gene in green algae and lay the foundation for further studies on the adaptation mechanism of Chlamydomonas sp. ICE-L to abiotic stresses.


Assuntos
Chlamydomonas/genética , Genes Bacterianos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Regiões Antárticas , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Fases de Leitura Aberta , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos
13.
Curr Microbiol ; 74(8): 921-929, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28516199

RESUMO

Calmodulin (CaM) is a Ca2+-binding protein that plays a role in several Ca2+ signaling pathways, which dynamically regulates the activities of hundreds of proteins. The ice alga Chlamydomonas sp. ICE-L, which has the ability to adapt to extreme polar conditions, is a crucial primary producer in Antarctic ecosystem. This study hypothesized that Cam helps the ICE-L to adapt to the fluctuating conditions in the polar environment. It first verified the overall length of Cam, through RT-PCR and RACE-PCR, based on partial Cam transcriptome library of ICE-L. Then, the nucleotide and predicted amino acid sequences were, respectively, analyzed by various bioinformatics approaches to gain more insights into the computed physicochemical properties of the CaM. Potential involvements of Cam in responding to certain stimuli (i.e., UVB radiation, high salinity, and temperature) were investigated by differential expression, measuring its transcription levels by means of quantitative RT-PCR. Results showed that CaM was indeed inducible and regulated by high UVB radiation, high salinity, and nonoptimal temperature conditions. Different conditions had different expression tendencies, which provided an important basis for investigating the adaptation mechanism of Cam in ICE-L.


Assuntos
Calmodulina/análise , Calmodulina/genética , Chlamydomonas/enzimologia , Perfilação da Expressão Gênica , Regiões Antárticas , Calmodulina/química , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/genética , Chlamydomonas/efeitos da radiação , Clonagem Molecular , Biologia Computacional , Pressão Osmótica , Reação em Cadeia da Polimerase , Salinidade , Temperatura , Raios Ultravioleta
14.
Int J Mol Sci ; 17(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548156

RESUMO

Ingenol mebutate possesses significant cytotoxicity and is clinically used to treat actinic keratosis. However, ingenol mebutate undergoes acyl migration which affects its bioactivity. Compound 3-O-angeloyl-20-O-acetyl ingenol (AAI, also known as 20-O-acetyl-ingenol-3-angelate or PEP008) is a synthetic derivative of ingenol mebutate. In this work, we report the AAI synthesis details and demonstrate AAI has higher cytotoxicity than ingenol mebutate in a chronic myeloid leukemia K562 cell line. Our data indicate that the increased activity of AAI originates from the improved intracellular stability of AAI rather than the increased binding affinity between AAI and the target protein protein kinase Cδ (PKCδ). AAI inhibits cell proliferation, induces G2/M phase arrest, disrupts the mitochondrial membrane potential, and stimulates apoptosis, as well as necrosis in K562 cells. Similar to ingenol mebutate, AAI activates PKCδ and extracellular signal regulated kinase (ERK), and inactivates protein kinase B (AKT). Furthermore, AAI also inhibits JAK/STAT3 pathway. Altogether, our studies show that ingenol derivative AAI is cytotoxic to K562 cells and modulates PKCδ/ERK, JAK/STAT3, and AKT signaling pathways. Our work suggests that AAI may be a new candidate of chemotherapeutic agent.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Diterpenos/química , Diterpenos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Molecules ; 22(1)2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28036030

RESUMO

Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Propiofenonas/farmacologia , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/farmacologia , Humanos , Humulus/química , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Molecules ; 20(1): 754-79, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25574819

RESUMO

The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed.


Assuntos
Flavonoides/farmacologia , Humulus/química , Propiofenonas/farmacologia , Animais , Flavonoides/efeitos adversos , Flavonoides/farmacocinética , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/farmacocinética , Aditivos Alimentares/farmacologia , Células Hep G2 , Humanos , Propiofenonas/efeitos adversos , Propiofenonas/farmacocinética , Ratos
17.
Int J Biol Macromol ; 267(Pt 1): 131214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580029

RESUMO

This study aimed to investigate the physicochemical properties of soluble dietary fiber (SDF) and cellulose enriched in Saccharina japonica by-products and to evaluate their anti-colitis effects. The water-holding capacity (WHC), swelling capacity (SC), cation exchange capacity (CEC), and antioxidant properties of SDF were superior to cellulose. The ΔH of SDF and cellulose was 340.73 J/g and 134.56 J/g, and the average particle size of them was 43.858 µm and 97.350 µm. The viscosity of SDF was positively correlated with the content. SEM revealed that the microstructure of SDF was porous, whereas cellulose was folded. SDF contained seven monosaccharides such as mannuronic acid and mannose, while cellulose had a single glucose composition. It was also shown that both SDF and cellulose reversed the pathological process of colitis by inhibiting weight loss, preventing colon injury, balancing oxidative stress, and regulating the level of inflammation, with the optimal dose being 1.5 g/kg. The difference was that SDF inhibited the expression of NF-кB and TNF-α, while cellulose up-regulated the expression of PPAR-γ and IL-10. Additionally, SDF could more positively control the expression of ZO-1, whereas cellulose was superior in improving the expression of Occludin. Interestingly, SDF could restore the structure of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group to ameliorate ulcerative colitis (UC), whereas cellulose mainly regulated the abundance of norank_f_Muribaculaceae, Faecalibaculum, Bacteroides and unclassified_f__Lachnospiraceae. The production of short-chain fatty acids (SCFAs) was also found to be restored by SDF and cellulose. Overall, SDF and cellulose can be considered important dietary components for treating and preventing UC.


Assuntos
Celulose , Colite , Fibras na Dieta , Algas Comestíveis , Microbioma Gastrointestinal , Laminaria , Celulose/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fibras na Dieta/farmacologia , Colite/metabolismo , Colite/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Masculino , Solubilidade , Inflamação/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças
18.
J Agric Food Chem ; 72(28): 15725-15739, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973111

RESUMO

Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.


Assuntos
Células Epiteliais , Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori , Indóis , Lacticaseibacillus paracasei , Helicobacter pylori/efeitos dos fármacos , Animais , Camundongos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Humanos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Indóis/farmacologia , Indóis/química , Lacticaseibacillus paracasei/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Inflamação/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Aderência Bacteriana/efeitos dos fármacos
19.
Int J Biol Macromol ; 268(Pt 2): 131915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679254

RESUMO

A water-soluble polysaccharide from the brown alga Ishige Okamurae, designated IOP-0, was obtained by preparative anion-exchange and size-exclusion chromatography. Chemical and spectroscopic investigations revealed that IOP-0 was a sulfated fucoidan with a backbone primarily composed of 3-linked and 4-linked-L-fucose with sulfate groups at C-2/C-4 of the 3-linked-L-fucose. The protective effect of IOP-0 on ulcerative colitis was evaluated in this work. The results showed that IOP-0 could significantly alleviate the symptoms of ulcerative colitis by preventing weight loss, preserving the structure of intestinal tissues, and ameliorating the dysregulation of inflammatory cytokines (TNF-α, IL-6, and IL-10). Meanwhile, IOP-0 protected the colonic mucosal barrier by promoting the tight junction protein ZO-1 and occludin expression. In addition, IOP-0 was able to maintain intestinal homeostasis and improve intestinal function by regulating the gut microbiota and their metabolites, such as short-chain fatty acids (SCFAs). These results suggest that IOP-0 might be a potential dietary supplement for the prevention and treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Microbioma Gastrointestinal , Polissacarídeos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Polissacarídeos/farmacologia , Polissacarídeos/química , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Sulfato de Dextrana/efeitos adversos , Camundongos , Phaeophyceae/química , Citocinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Inflamação/tratamento farmacológico , Sulfatos/química , Masculino
20.
Extremophiles ; 17(3): 477-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494479

RESUMO

Non-photochemical fluorescence quenching (NPQ) is mainly associated with the transthylakoid proton gradient (ΔpH) and xanthophyll cycle. However, the exact mechanism of NPQ is different in different oxygenic photosynthetic organisms. In this study, several inhibitors were used to study NPQ kinetics in the sea ice alga Chlamydomonas sp. ICE-L and to determine the functions of ΔpH and the xanthophyll cycle in the NPQ process. NH4Cl and nigericin, uncouplers of ΔpH, inhibited NPQ completely and zeaxanthin (Z) was not detected in 1 mM NH4Cl-treated samples. Moreover, Z and NPQ were increased in the samples containing N,N'-dicyclohexyl-carbodiimide (DCCD) under low light conditions. We conclude that ΔpH plays a major role in NPQ, and activation of the xanthophyll cycle is related to ΔpH. In dithiothreitol (DTT)-treated samples, no Z was observed and NPQ decreased. NPQ was completely inhibited when NH4Cl was added suggesting that part of the NPQ process is related to the xanthophyll cycle and the remainder depends on ΔpH. Moreover, lutein and ß-carotene were also essential for NPQ. These results indicate that NPQ in the sea ice alga Chlamydomonas sp. ICE-L is mainly dependent on ΔpH which affects the protonation of PSII proteins and de-epoxidation of the xanthophyll cycle, and the transthylakoid proton gradient alone can induce NPQ.


Assuntos
Chlamydomonas/metabolismo , Luteína/metabolismo , Fótons , Cloreto de Amônio/farmacologia , Regiões Antárticas , Dicicloexilcarbodi-Imida/farmacologia , Fluorescência , Concentração de Íons de Hidrogênio , Nigericina/farmacologia , Água do Mar , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo , Xantofilas/metabolismo , Zeaxantinas , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA