Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110065

RESUMO

BACKGROUND: Maize, wheat, rice and soybean production are intimately linked to food security. Identifying the key factors affecting crop yields and determining the countries where increased irrigation and nitrogen application most effectively enhance yields are essential steps towards achieving sustainable development goals and ensuring food security. Identifying these areas is crucially dependent on yield gaps. However, the lack of comparability between different regions in current regional-scale yield gap studies stems from varied methodologies. Moreover, global yield gap research, relying on statistical models and regression methods, tends to neglect the crop growth process. In this study, we used a random forest model, based on statistical and meteorological data, to pinpoint the key factors influencing crop yields. Subsequently, using unified yield data from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), derived from crop models simulations, we applied the yield gap method to calculate the potential yield increase for four crops across countries, under conditions of full irrigation and nitrogen application. RESULTS: Our research finds that nitrogen application is the main factor affecting yields globally, while irrigation plays a crucial role in the major producing countries. The countries with high potential for yield increases are located at the border between Africa and Eurasia. The global average yield of the four major crops increased 13.7-29.8% under full irrigation, 2.9-39.1% under full nitrogen application and 29.4-97.8% under both conditions. CONCLUSION: This study provides crucial insights into global crop yield changes and their determinants, which are highly important for global sustainable agriculture and food security efforts. © 2024 Society of Chemical Industry.

2.
Plant J ; 110(3): 735-747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35124871

RESUMO

Systemic acquired resistance is an essential immune response that triggers a broad-spectrum disease resistance throughout the plant. In the present study, we identified a peanut lesion mimic mutant m14 derived from an ethyl methane sulfonate-mutagenized mutant pool of peanut cultivar "Yuanza9102." Brown lesions were observed in the leaves of an m14 mutant from seedling stage to maturity. Using MutMap together with bulked segregation RNA analysis approaches, a G-to-A point mutation was identified in the exon region of candidate gene Arahy.R60CUW, which is the homolog of AtNPR3 (Nonexpresser of PR genes) in Arabidopsis. This point mutation caused a transition from Gly to Arg within the C-terminal transactivation domain of AhNPR3A. The mutation of AhNPR3A showed no effect in the induction of PR genes when treated with salicylic acid. Instead, the mutation resulted in upregulation of WRKY genes and several PR genes, including pathogenesis-related thaumatin- and chitinase-encoding genes, which is consistent with the resistant phenotype of m14 to leaf spot disease. Further study on the AhNPR3A gene will provide valuable insights into understanding the molecular mechanism of systemic acquired resistance in peanut. Moreover, our results indicated that a combination of MutMap and bulked segregation RNA analysis is an effective method for identifying genes from peanut mutants.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Fenótipo , RNA
3.
Theor Appl Genet ; 135(4): 1319-1330, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35059781

RESUMO

KEY MESSAGE: A major QTL, qBWA12, was fine mapped to a 216.68 kb physical region, and A12.4097252 was identified as a useful KASP marker for breeding peanut varieties resistant to bacterial wilt. Bacterial wilt, caused by Ralstonia solanacearum, is a major disease detrimental to peanut production in China. Breeding disease-resistant peanut varieties is the most economical and effective way to prevent the disease and yield loss. Fine mapping the QTLs for bacterial wilt resistance is critical for the marker-assisted breeding of disease-resistant varieties. A recombinant inbred population comprising 521 lines was used to construct a high-density genetic linkage map and to identify QTLs for bacterial wilt resistance following restriction-site-associated DNA sequencing. The genetic map, which included 5120 SNP markers, covered a length of 3179 cM with an average marker distance of 0.6 cM. Four QTLs for bacterial wilt resistance were mapped on four chromosomes. One major QTL, qBWA12, with LOD score of 32.8-66.0 and PVE of 31.2-44.8%, was stably detected in all four development stages investigated over the 3 trial years. Additionally, qBWA12 spanned a 2.7 cM region, corresponding to approximately 0.4 Mb and was fine mapped to a 216.7 kb region by applying KASP markers that were polymorphic between the two parents based on whole-genome resequencing data. In a large collection of breeding and germplasm lines, it was proved that KASP marker A12.4097252 can be applied for the marker-assisted breeding to develop peanut varieties resistant to bacterial wilt. Of the 19 candidate genes in the region covered by qBWA12, nine NBS-LRR genes should be further investigated regarding their potential contribution to the resistance of peanut against bacterial wilt.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Arachis/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
4.
Waste Manag Res ; 40(6): 736-744, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34334056

RESUMO

Aiming to reveal the humification process of organic waste and its contribution to the heavy metal behaviour affected by earthworm activity, it was studied about the variation of humic acid (HA) and heavy metal behaviour during vermicomposting of the mixed pig manure and 13C-labelled rice straw. The results showed that earthworms could well adapt to the culturing environment and feed organic matter for its growth and reproduction, the vermicomposting process increased the content of humic substances (HS), HA, and fulvic acid (FA) in substrate residues, but led to less transformation of HA into FA. The elemental, ultraviolet absorption spectroscopy, Fourier transform infrared (FTIR) and fluorescence excitation-emission matrix (EEM) analysis indicated that vermicomposting led to more aromatic structures and much higher humification degree in HA, whereas less protein, FA-like substances and plastein in HA. Vermicomposting could enhance the total Cu content and decrease Cu/Zn bioavailability in the substrate residues, and vermicomposting especially can help stabilize Cu in the substrate residues by forming more complexed HA-Cu.


Assuntos
Metais Pesados , Oligoquetos , Oryza , Animais , Substâncias Húmicas/análise , Esterco , Oligoquetos/metabolismo , Suínos
5.
Ecotoxicol Environ Saf ; 215: 112163, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33756288

RESUMO

Cadmium (Cd) contamination has become serious in soil and in situ stabilization technology has been widely used for heavy metal remediation. A field study was conducted to determine the effect of amendments with the doses of 3 kg/m2, including single vermicompost (A1), a 95% vermicompost mixed with 5% shell powder composite (A2) and a 95% vermicompost mixed with 5% modified shell powder composite (A3), on the Cd bioavailability, enzyme activity and bacterial community in soil, and the experiment was conducted with lettuce (Lactuca sativa L.) grown in a Cd-contaminated farmland soil. The results showed that the application of amendments increased the pH, cation exchange capacity (CEC), organic matter (OM), available nutrients, catalase (S-CAT), invertase (S-SC) and urease (S-UE) activities in soil, while significantly reduced the Cd bioavailability with the lowest Cd bioavailability being observed in the soil with A3 application. The soil bacterial richness and diversity increased after amendments application, and the bacterial community was characterized by an increase in metal-tolerant bacteria but a decrease in Proteobacteria, Acidobacteria and Gemmatimonadetes. In addition, the application of amendments significantly improved the growth of lettuce (Lactuca sativa L.) and inhibited Cd accumulation in its edible parts, especially, the Cd content in lettuce (Lactuca sativa L.) grown in soil with A3 application was below the limit of the National Food Safety Standard of China (maximum level ≤ 0.2 mg/kg). Thus, composite amendment obtained from vermicompost mixed with modified shell powder can be used as potential remediation material in Cd-contaminated soil. CAPSULE: Composite amendment obtained from vermicompost and modified shell powder had good effects on remediation of Cd-contaminated soil.


Assuntos
Cádmio/análise , Microbiologia do Solo , Poluentes do Solo/análise , Acidobacteria , Bactérias , Disponibilidade Biológica , China , Poluição Ambiental , Fazendas , Lactuca , Metais Pesados , Pós , Proteobactérias , Solo/química , Urease
6.
Breed Sci ; 69(2): 234-243, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31481832

RESUMO

High oleic acid composition is an important determinant of seed quality in peanut (Arachis hypogaea) in regard to its nutritional benefits for human health and prolonged shelf-life for peanut products. To improve the oleic acid content of popular peanut cultivars in China, four peanut cultivars of different market types were hybridized with high-oleic-acid donors and backcrossed for four generations as recurrent parents using fad2 marker-assisted backcross selection. Seed quality traits in advanced generations derived by selfing were assessed using near-infrared reflectance spectroscopy for detection of oleic acid and Kompetitive allele-specific PCR (KASP) screening of fad2 mutant markers. Twenty-four high-oleic-acid lines of BC4F4 and BC4F5 populations, with morphological features and agronomic traits similar to those of the recurrent parents, were obtained within 5 years. The genetic backgrounds of BC4F5 lines were estimated using the KASP assay, which revealed the genetic background recovery rate was 79.49%-92.31%. The superior lines raised are undergoing a multi-location test for cultivar registration and release. To our knowledge, this is the first application of single nucleotide polymorphism markers based on the high-throughput and cost-effective KASP assay for detection of fad2 mutations and genetic background evaluation in a peanut breeding program.

7.
Sci Total Environ ; 952: 175996, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39233066

RESUMO

The farmland ecosystem, with its numerous material cycles and energy flows, is an important part of the carbon cycle in terrestrial ecosystems. Focusing on the carbon neutrality of farmland is meaningful for mitigating global warming and serving national low-carbon strategies. This study enriches the carbon accounting items of farmland and establishes a new research framework to check the carbon neutrality of farmland from the aspect of regional interactions and, subsequently, the inequality among China's provinces. The results revealed that there is still a great gap in the capability of China's farmland to reach carbon neutrality, with a gap value of up to 10,503 × 104 t C. All of the provinces presented net carbon emissions, and the per unit area carbon neutrality gaps showed spatial regularity decreasing from the coastal regions to the inland areas. Anthropogenic carbon emissions on farmland played a dominant role compared with soil organic carbon. Five provinces had reduced interior-regional carbon emissions through grain trade, and the amounts were especially high for developed regions, such as Guangdong, Zhejiang, Beijing, Shanghai and Jiangsu. Sixteen provinces gained external carbon emissions through trade; these were the less developed regions located mainly in the north, such as Inner Mongolia, Hebei, Jilin, Heilongjiang and Xinjiang. Under regional inequality, 15 provinces added to the net amount of the carbon emissions generated in external regions, with China's megacities adding the highest percentage, especially Beijing, with 389.95 % compared with its original emissions. Inequality showed that most provinces had a moderate status. Sichuan and Hunan experienced weak advantages, and six provinces had disadvantages. Therefore, constructing compensation and trade-based rights and responsibilities traceability mechanisms is important.

8.
Nat Genet ; 56(9): 1975-1984, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138385

RESUMO

Cultivated peanut (Arachis hypogaea L.) is a widely grown oilseed crop worldwide; however, the events leading to its origin and diversification are not fully understood. Here by combining chloroplast and whole-genome sequence data from a large germplasm collection, we show that the two subspecies of A. hypogaea (hypogaea and fastigiata) likely arose from distinct allopolyploidization and domestication events. Peanut genetic clusters were then differentiated in relation to dissemination routes and breeding efforts. A combination of linkage mapping and genome-wide association studies allowed us to characterize genes and genomic regions related to main peanut morpho-agronomic traits, namely flowering pattern, inner tegument color, growth habit, pod/seed weight and oil content. Together, our findings shed light on the evolutionary history and phenotypic diversification of peanuts and might be of broad interest to plant breeders.


Assuntos
Arachis , Cloroplastos , Evolução Molecular , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo , Sequenciamento Completo do Genoma , Arachis/genética , Cloroplastos/genética , Mapeamento Cromossômico , Filogenia , Domesticação , Melhoramento Vegetal/métodos
9.
Environ Sci Pollut Res Int ; 30(4): 8998-9010, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35648348

RESUMO

A large amount of kitchen waste is produced all over the world. Biochemical disposal is an effective method for the reduction and safe utilization of kitchen waste. However, high salinity, low maturity and poor biocompatibility were encountered when utilizing the biochemical residue of kitchen waste (BRKW) as a kind of soil amendment. To reduce the high salinity, accelerate the maturity and improve the biocompatibility in the BRKW, this study used the BRKW as the main feedstock for earthworms after hydrolyzed polymaleic anhydride (HPMA) was added and focused on revealing the effect of HPMA addition combined with the vermicomposting process on the growth of earthworms and on the basic physicochemical properties and the microbial diversity of the derived vermicompost. The results showed that HPMA addition can promote earthworm growth and reproduction. The pH, electric conductivity, organic matter content, C/N and NH4+-N/NO3--N were decreased in the final vermicompost, while total nitrogen, total phosphorus and total potassium contents, and the seed germination index were increased. Scanning electron microscopy analysis showed that there was more disintegration in the final vermicompost. Meanwhile, adding the HPMA also helped to decrease the total number of fungi while increasing the populations of nitrogen-fixing bacteria, phosphorus-solubilizing bacteria and potassium-solubilizing bacteria as well as amount of total bacteria and actinomycetes. The vermicomposting process increased the bacterial phyla that promote the degradation of OM, such as Actinobacteria, Firmicutes and Acidobacteria, decreased the pathogenic Enterobacter and increased the bacterial genera that promote the maturity and quality, such as Cellvibrio and Pseudomonas. Thus, HPMA addition combined with vermicomposting can promote the growth of beneficial bacteria that promote the degradation of lignocelluloses and accelerate maturity while inhibiting some potential bacterial pathogens, which helps guarantee the safety of vermicomposting products from BRKW. Hence, employing HPMA to promote BRKW vermicomposting can possibly reduce salt content and improve the maturity and biocompatibility of the final vermicompost. This approach may help realize the safe utilization of BRKW and further promote the biochemical disposal of kitchen waste.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Solo/química , Bactérias , Fósforo/metabolismo , Esterco
10.
Front Genet ; 13: 1089389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685909

RESUMO

As an important factor affecting the edible quality of peanut kernels, sucrose content is a complex quantitative trait regulated by multiple factors. In this study, an F2 segregating population and a recombinant inbred line (RIL) population, derived from a cross between the high sucrose content variety Jihuatian 1 and the low sucrose content line PI478819, were used as materials to map a quantitative trait locus (QTL) associated with sucrose content in peanut kernels. Four QTLs were initially located on chromosomes A03 and A06 based on BSA-seq technology, and multiple kompetitive allele-specific PCR markers were developed based on single-nucleotide polymorphisms (SNPs) in the intervals. The markers were genotyped in the RIL population and finely mapped to a stable QTL, qSUCA06, located on chromosome A06 within a 0.29-Mb physical genomic interval (112367085-112662675 bp), which accounted for 31.95%-41.05% of the phenotypic variance explained. SNP and insertion/deletion annotations were performed on genes in the candidate interval, and having screened out those genes with mutations in exons, candidate genes were verified by qRT-PCR. The results revealed that Arahy.Y2LWD9 may be the main gene regulating sucrose content. The QTL identified in this study will not only contribute to marker-assisted breeding for improvement of peanut sucrose content but also paves the way for identifying gene function.

11.
Sci Rep ; 8(1): 14500, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266974

RESUMO

Cultivated peanut (Arachis hypogaea L.) were classified into six botanical varieties according to the morphological characteristics. However, their genetic evolutionary relationships at the genome-wide level were still unclear. A total of 320 peanut accessions, including four of the six botanical varieties, and 37,128 high-quality single nucleotide polymorphisms (SNPs) detected by tunable genotyping-by-sequencing (tGBS) were used to reveal the evolutionary relationships among different botanical varieties and verify the phenotypic classification. A phylogenetic tree indicated that the tested accessions were grouped into three clusters. Almost all of the peanut accessions in cluster C1 belong to var. fastigiata, and clusters C2 and C3 mainly consisted of accessions from var. vulgaris and subsp. hypogaea, respectively. The results of a principal component analysis were consistent with relationships revealed in the phylogenetic tree. Population structure analysis showed that var. fastigiata and var. vulgaris were not separated when K = 2 (subgroup number), whereas they were clearly divided when K = 3. However, var. hypogaea and var. hirsuta could not be distinguished from each other all the way. The nucleotide diversity (π) value implied that var. vulgaris exhibited the highest genetic diversity (0.048), followed by var. fastigiata (0.035) and subsp. hypogaea (0.012), which is consistent with the result of phylogenetic tree. Moreover, the fixation index (FST) value confirmed that var. fastigiata and var. vulgaris were closely related to each other (FST = 0.284), while both of them were clearly distinct from var. hypogaea (FST > 0.4). The present study confirmed the traditional botanical classifications of cultivated peanut at the genome-wide level. Furthermore, the reliable SNPs identified in this study may be a valuable resource for peanut breeders.


Assuntos
Arachis/genética , Botânica/métodos , Técnicas de Genotipagem , Arachis/classificação , DNA de Plantas/genética , Variação Genética , Genoma de Planta , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Análise de Sequência de DNA/métodos
12.
PLoS One ; 12(12): e0190313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267403

RESUMO

Climate change affects the timing of phenological events, such as the start, end, and length of the growing season of vegetation. A better understanding of how the phenology responded to climatic determinants is important in order to better anticipate future climate-ecosystem interactions. We examined the changes of three phenological events for the Mongolian Plateau and their climatic determinants. To do so, we derived three phenological metrics from remotely sensed vegetation indices and associated these with climate data for the period of 1982 to 2011. The results suggested that the start of the growing season advanced by 0.10 days yr-1, the end was delayed by 0.11 days yr-1, and the length of the growing season expanded by 6.3 days during the period from 1982 to 2011. The delayed end and extended length of the growing season were observed consistently in grassland, forest, and shrubland, while the earlier start was only observed in grassland. Partial correlation analysis between the phenological events and the climate variables revealed that higher temperature was associated with an earlier start of the growing season, and both temperature and precipitation contributed to the later ending. Overall, our findings suggest that climate change will substantially alter the vegetation phenology in the grasslands of the Mongolian Plateau, and likely also in biomes with similar environmental conditions, such as other semi-arid steppe regions.


Assuntos
Mudança Climática , Ecossistema , Plantas , Biodiversidade , Mongólia
13.
Sci Data ; 4: 170116, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829436

RESUMO

Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems.

14.
Artigo em Inglês | MEDLINE | ID: mdl-27571087

RESUMO

Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s-1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability.


Assuntos
Agricultura/história , Mudança Climática/história , Conservação dos Recursos Naturais/história , Agricultura Florestal/história , China , Fazendas/história , Florestas , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA