Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(14): 3564-3567, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838731

RESUMO

This Letter presents a ray phase mapping model (RPM) for fringe projection profilometry (FPP) that avoids calibrating intrinsic parameters. The novelty of the RPM, to the best of our knowledge, is the ability to characterize the imaging system with independent rays for each pixel, and to associate the rays with the projected phase in the illumination field for efficient 3D mapping, which avoids complex imaging-specific modeling about lens layout and distortion. Two loss functions are constructed to flexibly optimize camera ray parameters and mapping coefficients, respectively. As a universal approach, it has the potential to calibrate different types of FPP systems with high accuracy. Experiments on wide-angle lens FPP, telecentric lens FPP, and micro-electromechanical system (MEMS)-based FPP are carried out to verify the feasibility of the proposed method.

2.
Opt Express ; 29(21): 34243-34257, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809219

RESUMO

Micro-Electro-Mechanical System (MEMS) scanning is increasingly popular in 3D surface measurement with the merits of the compact structure and high frame-rate. In this paper, we achieve real-time fringe structured 3D reconstruction by using a uniaxial MEMS-based projector. To overcome the limitations on uniaxial MEMS-based projector of lensless structure and unidirectional fringe projection, a novel isophase plane model is proposed, in which the laser line from MEMS-based projector is regarded as an isophase plane. Our model directly establishes the mapping relationship between phase and spatial 3D coordinates through the intersection point of camera back-projection light ray and isophase plane. Furthermore, a flexible calibration strategy to obtain 3D mapping coefficients is introduced with a specially designed planar target. Experiments demonstrated that our method can achieve high-accuracy and real-time 3D reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA