Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 27(2): 933-949, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158484

RESUMO

Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.


Assuntos
Inibição Neural/fisiologia , Proteínas de Ligação a RNA/metabolismo , Córtex Somatossensorial/fisiologia , Navegação Espacial/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Animais , Espaço Extracelular/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas de Ligação a RNA/genética , Ratos Transgênicos , Ratos Wistar , Tempo de Reação/fisiologia , Serotonina/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Córtex Somatossensorial/patologia , Simportadores/metabolismo , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
2.
J Invest Dermatol ; 142(4): 1020-1025, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35051379

RESUMO

In this perspective, we focus on the skin epidermis and take you on a journey that highlights the adhesive- and cell shape‒changing adventures of a keratinocyte while it travels through the different layers of the epidermis, which is essential to make, maintain, and repair this barrier.


Assuntos
Adesivos , Queratinócitos , Forma Celular , Células Epidérmicas , Epiderme
3.
Gigascience ; 7(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418576

RESUMO

Background: Active sensing is crucial for navigation. It is characterized by self-generated motor action controlling the accessibility and processing of sensory information. In rodents, active sensing is commonly studied in the whisker system. As rats and mice modulate their whisking contextually, they employ frequency and amplitude modulation. Understanding the development, mechanisms, and plasticity of adaptive motor control will require precise behavioral measurements of whisker position. Findings: Advances in high-speed videography and analytical methods now permit collection and systematic analysis of large datasets. Here, we provide 6,642 videos as freely moving juvenile (third to fourth postnatal week) and adult rodents explore a stationary object on the gap-crossing task. The dataset includes sensory exploration with single- or multi-whiskers in wild-type animals, serotonin transporter knockout rats, rats received pharmacological intervention targeting serotonergic signaling. The dataset includes varying background illumination conditions and signal-to-noise ratios (SNRs), ranging from homogenous/high contrast to non-homogenous/low contrast. A subset of videos has been whisker and nose tracked and are provided as reference for image processing algorithms. Conclusions: The recorded behavioral data can be directly used to study development of sensorimotor computation, top-down mechanisms that control sensory navigation and whisker position, and cross-species comparison of active sensing. It could also help to address contextual modulation of active sensing during touch-induced whisking in head-fixed vs freely behaving animals. Finally, it provides the necessary data for machine learning approaches for automated analysis of sensory and motion parameters across a wide variety of signal-to-noise ratios with accompanying human observer-determined ground-truth.


Assuntos
Comportamento Animal/fisiologia , Bases de Dados Factuais , Gravação em Vídeo , Algoritmos , Animais , Interpretação de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Transgênicos , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Serotonina/deficiência , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Razão Sinal-Ruído , Vibrissas/fisiologia
4.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197543

RESUMO

Brain research investigating electrical activity within neural tissue is producing an increasing amount of physiological data including local field potentials (LFPs) obtained via extracellular in vivo and in vitro recordings. In order to correctly interpret such electrophysiological data, it is vital to adequately understand the electrical properties of neural tissue itself. An ongoing controversy in the field of neuroscience is whether such frequency-dependent effects bias LFP recordings and affect the proper interpretation of the signal. On macroscopic scales and with large injected currents, previous studies have found various grades of frequency dependence of cortical tissue, ranging from negligible to strong, within the frequency band typically considered relevant for neuroscience (less than a few thousand hertz). Here, we performed a detailed investigation of the frequency dependence of the conductivity within cortical tissue at microscopic distances using small current amplitudes within the typical (neuro)physiological micrometer and sub-nanoampere range. We investigated the propagation of LFPs, induced by extracellular electrical current injections via patch-pipettes, in acute rat brain slice preparations containing the somatosensory cortex in vitro using multielectrode arrays. Based on our data, we determined the cortical tissue conductivity over a 100-fold increase in signal frequency (5-500 Hz). Our results imply at most very weak frequency-dependent effects within the frequency range of physiological LFPs. Using biophysical modeling, we estimated the impact of different putative impedance spectra. Our results indicate that frequency dependencies of the order measured here and in most other studies have negligible impact on the typical analysis and modeling of LFP signals from extracellular brain recordings.


Assuntos
Impedância Elétrica , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica , Espaço Extracelular , Masculino , Microeletrodos , Modelos Neurológicos , Técnicas de Patch-Clamp , Ratos Wistar , Cloreto de Sódio , Técnicas de Cultura de Tecidos
5.
Brain Struct Funct ; 220(3): 1317-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24569853

RESUMO

Recent experimental evidence suggests a finer genetic, structural and functional subdivision of the layers which form a cortical column. The classical layer II/III (LII/III) of rodent neocortex integrates ascending sensory information with contextual cortical information for behavioral read-out. We systematically investigated to which extent regular-spiking supragranular pyramidal neurons, located at different depths within the cortex, show different input-output connectivity patterns. Combining glutamate uncaging with whole-cell recordings and biocytin filling, we revealed a novel cellular organization of LII/III: (1) "Lower LII/III" pyramidal cells receive a very strong excitatory input from lemniscal LIV and much fewer inputs from paralemniscal LVa. They project to all layers of the home column, including a feedback projection to LIV, whereas transcolumnar projections are relatively sparse. (2) "Upper LII/III" pyramidal cells also receive their strongest input from LIV, but in addition, a very strong and dense excitatory input from LVa. They project extensively to LII/III as well as LVa and Vb of their home and neighboring columns. (3) "Middle LII/III" pyramidal cell shows an intermediate connectivity phenotype that stands in many ways in between the features described for lower versus upper LII/III. "Lower LII/III" intracolumnarly segregates and transcolumnarly integrates lemniscal information, whereas "upper LII/III" seems to integrate lemniscal with paralemniscal information. This suggests a fine-grained functional subdivision of the supragranular compartment containing multiple circuits without any obvious cytoarchitectonic, other structural or functional correlate of a laminar border in rodent barrel cortex.


Assuntos
Potenciais de Ação/fisiologia , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Eletrofisiologia/métodos , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Vias Neurais/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Ratos , Córtex Somatossensorial/efeitos dos fármacos
6.
Front Cell Neurosci ; 7: 88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23761736

RESUMO

Homeostatic regulation of serotonin (5-HT) concentration is critical for "normal" topographical organization and development of thalamocortical (TC) afferent circuits. Down-regulation of the serotonin transporter (SERT) and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1). Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT(-/-)) rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i) the TC projections of the ventroposteromedial thalamic nucleus toward S1, (ii) the general barrel-field pattern, and (iii) the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 [spiny stellate (SpSt) and pyramidal cells]. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections toward the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT(-/-) rats. In layer IV, both excitatory SpSt and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV SpSt cells gave rise to a prominent projection toward the infragranular layer Vb. Our findings point to a structural and functional reorganization of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel cortex.

7.
PLoS One ; 7(9): e45039, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984605

RESUMO

The subiculum (SUB) is a pivotal structure positioned between the hippocampus proper and various cortical and subcortical areas. Despite the growing body of anatomical and intrinsic electrophysiological data of subicular neurons, modulation of synaptic transmission in the SUB is not well understood. In the present study we investigated the role of group II metabotropic glutamate receptors (mGluRs), which have been shown to be involved in the regulation of synaptic transmission by suppressing presynaptic cAMP activity. Using field potential and patch-clamp whole cell recordings we demonstrate that glutamatergic transmission at CA1-SUB synapses is depressed by group II mGluRs in a cell-type specific manner. Application of the group II mGluR agonist (2S,1'R,2'R,3'R)-2-(2, 3-dicarboxycyclopropyl)glycine (DCG-IV) led to a significantly higher reduction of excitatory postsynaptic currents in subicular bursting cells than in regular firing cells. We further used low-frequency stimulation protocols and brief high-frequency bursts to test whether synaptically released glutamate is capable of activating presynaptic mGluRs. However, neither frequency facilitation is enhanced in the presence of the group II mGluR antagonist LY341495, nor is a test stimulus given after a high-frequency burst. In summary, we present pharmacological evidence for presynaptic group II mGluRs targeting subicular bursting cells, but both low- and high-frequency stimulation protocols failed to activate presynaptically located mGluRs.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/fisiologia , Aminoácidos/farmacologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Ciclopropanos/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA