Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7915): 785-790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705806

RESUMO

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Fenilalanina , Condicionamento Físico Animal , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Fenilalanina/administração & dosagem , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Condicionamento Físico Animal/fisiologia
2.
Nat Biomed Eng ; 8(1): 11-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36658343

RESUMO

Current healthcare practices are reactive and use limited physiological and clinical information, often collected months or years apart. Moreover, the discovery and profiling of blood biomarkers in clinical and research settings are constrained by geographical barriers, the cost and inconvenience of in-clinic venepuncture, low sampling frequency and the low depth of molecular measurements. Here we describe a strategy for the frequent capture and analysis of thousands of metabolites, lipids, cytokines and proteins in 10 µl of blood alongside physiological information from wearable sensors. We show the advantages of such frequent and dense multi-omics microsampling in two applications: the assessment of the reactions to a complex mixture of dietary interventions, to discover individualized inflammatory and metabolic responses; and deep individualized profiling, to reveal large-scale molecular fluctuations as well as thousands of molecular relationships associated with intra-day physiological variations (in heart rate, for example) and with the levels of clinical biomarkers (specifically, glucose and cortisol) and of physical activity. Combining wearables and multi-omics microsampling for frequent and scalable omics may facilitate dynamic health profiling and biomarker discovery.


Assuntos
Multiômica , Biomarcadores
3.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746454

RESUMO

More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions. By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage. Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients. Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.

4.
Nat Med ; 30(5): 1448-1460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760586

RESUMO

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Assuntos
Transplante de Coração , Xenoenxertos , Transplante Heterólogo , Humanos , Animais , Suínos , Masculino , Feminino , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Proteômica , Metabolômica , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Lipidômica , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Multiômica
5.
Sci Adv ; 9(21): eade7692, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224249

RESUMO

Preterm birth (PTB) is the leading cause of death in children under five, yet comprehensive studies are hindered by its multiple complex etiologies. Epidemiological associations between PTB and maternal characteristics have been previously described. This work used multiomic profiling and multivariate modeling to investigate the biological signatures of these characteristics. Maternal covariates were collected during pregnancy from 13,841 pregnant women across five sites. Plasma samples from 231 participants were analyzed to generate proteomic, metabolomic, and lipidomic datasets. Machine learning models showed robust performance for the prediction of PTB (AUROC = 0.70), time-to-delivery (r = 0.65), maternal age (r = 0.59), gravidity (r = 0.56), and BMI (r = 0.81). Time-to-delivery biological correlates included fetal-associated proteins (e.g., ALPP, AFP, and PGF) and immune proteins (e.g., PD-L1, CCL28, and LIFR). Maternal age negatively correlated with collagen COL9A1, gravidity with endothelial NOS and inflammatory chemokine CXCL13, and BMI with leptin and structural protein FABP4. These results provide an integrated view of epidemiological factors associated with PTB and identify biological signatures of clinical covariates affecting this disease.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Criança , Humanos , Feminino , Nascimento Prematuro/epidemiologia , Países em Desenvolvimento , Multiômica , Proteômica , Quimiocinas CC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA