Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ann Diagn Pathol ; 57: 151881, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34968863

RESUMO

Hepatic disease is common in severe COVID-19. This study compared the histologic/molecular findings in the liver in fatal COVID-19 (n = 9) and age-matched normal controls (n = 9); three of the fatal COVID-19 livers had pre-existing alcohol use disorder (AUD). Controls showed a high resident population of sinusoidal macrophages that had variable ACE2 expression. Histologic findings in the cases included periportal/lobular inflammation. SARS-CoV2 RNA and nucleocapsid protein were detected in situ in 2/9 COVID-19 livers in low amounts. In 9/9 cases, there was ample in situ SARS-CoV-2 spike protein that co-localized with viral matrix and envelope proteins. The number of cells positive for spike/100× field was significantly greater in the AUD/COVID-19 cases (mean 5.9) versus the non-AUD/COVID-19 cases (mean 0.4, p < 0.001) which was corroborated by Western blots. ACE2+ cells were 10× greater in AUD/COVID-19 livers versus the other COVID-19/control liver samples (p < 0.001). Co-expression experiments showed that the spike protein localized to the ACE2 positive macrophages and, in the AUD cases, hepatic stellate cells that were activated as evidenced by IL6 and TNFα expression. Injection of the S1, but not S2, subunit of spike in mice induced hepatic lobular inflammation in activated macrophages. It is concluded that endocytosed viral spike protein can induce hepatitis in fatal COVID-19. This spike induced hepatitis is more robust in the livers with pre-existing AUD which may relate to why patients with alcohol abuse are at higher risk of severe liver disease with SARS-CoV2 infection.


Assuntos
Alcoolismo/patologia , COVID-19/patologia , Hepatopatias/patologia , Idoso , Alcoolismo/complicações , Animais , COVID-19/complicações , Feminino , Humanos , Hepatopatias/complicações , Masculino , Camundongos , Pessoa de Meia-Idade
2.
Ann Diagn Pathol ; 61: 152057, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334414

RESUMO

Pre-existing Alzheimer's disease is a risk factor for severe/fatal COVID-19 and infection by SARS-CoV2 virus has been associated with an increased incidence of un-masked Alzheimer's disease. The molecular basis whereby SARS-CoV2 may amplify Alzheimer's disease is not well understood. This study analyzed the molecular changes in autopsy brain tissues from people with pre-existing dementia who died of COVID-19 (n = 5) which was compared to equivalent tissues of people who died of COVID-19 with no history of dementia (n = 8), Alzheimer's disease pre-COVID-19 (n = 10) and aged matched controls (n = 10) in a blinded fashion. Immunohistochemistry analyses for hyperphosphorylated tau protein, α-synuclein, and ß-amyloid-42 confirmed the diagnoses of Alzheimer's disease (n = 4), and Lewy body dementia (n = 1) in the COVID-19 group. The brain tissues from patients who died of COVID-19 with no history of dementia showed a diffuse microangiopathy marked by endocytosis of spike subunit S1 and S2 in primarily CD31+ endothelia with strong co-localization with ACE2, Caspase-3, IL6, TNFα, and Complement component 6 that was not associated with SARS-CoV2 RNA. Microglial activation marked by increased TMEM119 and MCP1 protein expression closely paralleled the endocytosed spike protein. The COVID-19 tissues from people with no pre-existing dementia showed, compared to controls, 5-10× fold increases in expression of neuronal NOS and NMDAR2 as well as a marked decrease in the expression of proteins whose loss is associated with worsening Alzheimer's disease: MFSD2a, SHIP1, BCL6, BCL10, and BACH1. In COVID-19 tissues from people with dementia the widespread spike-induced microencephalitis with the concomitant microglial activation co-existed in the same areas where neurons had hyperphosphorylated tau protein suggesting that the already dysfunctional neurons were additionally stressed by the SARS-CoV2 induced microangiopathy. ACE2+ human brain endothelial cells treated with high dose (but not vaccine equivalent low dose) spike S1 protein demonstrated each of the molecular changes noted in the in vivo COVID-19 and COVID-19/Alzheimer's disease brain tissues. It is concluded that fatal COVID-19 induces a diffuse microencephalitis and microglial activation in the brain due to endocytosis of circulating viral spike protein that amplifies pre-existing dementia in at least two ways: 1) modulates the expression of proteins that may worsen Alzheimer's disease and 2) stresses the already dysfunctional neurons by causing an acute proinflammatory/hypercoagulable/hypoxic microenvironment in areas with abundant hyperphosphorylated tau protein and/or ßA-42.


Assuntos
Doença de Alzheimer , COVID-19 , Idoso , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Enzima de Conversão de Angiotensina 2 , COVID-19/complicações , Células Endoteliais/metabolismo , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas tau/metabolismo , Sistema Nervoso Central
3.
Ann Diagn Pathol ; 51: 151682, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360731

RESUMO

Neurologic complications of symptomatic COVID-19 are common. Brain tissues from 13 autopsies of people who died of COVID-19 were examined. Cultured endothelial and neuronal cells were incubated with and wild type mice were injected IV with different spike subunits. In situ analyses were used to detect SARS-CoV-2 proteins and the host response. In 13/13 brains from fatal COVID-19, pseudovirions (spike, envelope, and membrane proteins without viral RNA) were present in the endothelia of microvessels ranging from 0 to 14 positive cells/200× field (mean 4.3). The pseudovirions strongly co-localized with caspase-3, ACE2, IL6, TNFα, and C5b-9. The surrounding neurons demonstrated increased NMDAR2 and neuronal NOS plus decreased MFSD2a and SHIP1 proteins. Tail vein injection of the full length S1 spike subunit in mice led to neurologic signs (increased thirst, stressed behavior) not evident in those injected with the S2 subunit. The S1 subunit localized to the endothelia of microvessels in the mice brain and showed co-localization with caspase-3, ACE2, IL6, TNFα, and C5b-9. The surrounding neurons showed increased neuronal NOS and decreased MFSD2a. It is concluded that ACE2+ endothelial damage is a central part of SARS-CoV2 pathology and may be induced by the spike protein alone. Thus, the diagnostic pathologist can use either hematoxylin and eosin stain or immunohistochemistry for caspase 3 and ACE2 to document the endothelial cell damage of COVID-19.


Assuntos
COVID-19/virologia , Células Endoteliais/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia/métodos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Microvasos/metabolismo , Microvasos/virologia , Pessoa de Meia-Idade , Subunidades Proteicas/metabolismo , RNA Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
4.
Genes Chromosomes Cancer ; 58(4): 208-218, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30382602

RESUMO

MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.


Assuntos
Carcinogênese/genética , Leucemia/genética , MicroRNAs/genética , Evasão Tumoral/genética , Animais , Carcinogênese/imunologia , Síndrome de Down/genética , Síndrome de Down/imunologia , Humanos , Imunoterapia/métodos , Leucemia/imunologia , Leucemia/terapia , MicroRNAs/metabolismo
5.
Ann Diagn Pathol ; 34: 103-109, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29661714

RESUMO

This study examined the molecular correlates of Down's dementia. qRTPCR for chromosome 21 microRNAs was correlated with in situ hybridization, immunohistochemistry for microRNA targets, mRNAs located on chromosome 21, and neurofibrillary tangles in human and the Ts65 dn mouse Down's model. qRTPCR for the microRNAs on the triplicated chromosome showed miR-155 dominance in brain tissues (14.3 fold increase, human and 24.2 fold increase, mouse model) that co-expressed with hyperphosphorylated tau protein. miR-155 was not elevated in Alzheimer's disease or neonates with Downs' syndrome. Chromosome 21 genes APP/BA-42, DYRK1a and BACH1 were not correlated to pathologic changes in Down's dementia. Validated CNS targets of miR-155 that were present in controls and Alzheimer's disease but lacking in Down's dementia brains included BACH1, CoREST1, bcl6, BIM, bcl10, cyclin D, and SAPK4. It is concluded that Down's dementia strongly correlated with overexpression of chromosome 21 microRNA 155 with concomitant reduction of multiple CNS-functional targets. This study highlights the need for anatomic pathologists to determine the specific and diverse pathways cells may take to form neurofibrillary tangles in the different dementias.


Assuntos
Doença de Alzheimer/genética , Demência/genética , Síndrome de Down/genética , MicroRNAs/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Síndrome de Down/patologia , Humanos , Imuno-Histoquímica , Camundongos , MicroRNAs/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima
6.
Ann Diagn Pathol ; 36: 12-20, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29966831

RESUMO

Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.


Assuntos
Isquemia/metabolismo , Proteínas de Membrana Transportadoras/genética , MicroRNAs/genética , Traumatismos da Medula Espinal/genética , Animais , Modelos Animais de Doenças , Imuno-Histoquímica/métodos , Isquemia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Simportadores , Proteínas Supressoras de Tumor/genética
7.
Immunol Rev ; 253(1): 167-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23550646

RESUMO

It is now largely admitted that a pro-inflammatory environment may curtail anti-tumor immunity and favor cancer initiation and progression. The discovery that small non-coding regulatory RNAs, namely microRNAs (miRNAs), regulate all aspects of cell proliferation, differentiation, and function has shed a new light on regulatory mechanisms linking inflammation and cancer. Thus, miRNAs such as miR-21, miR-125b, miR-155, miR-196, and miR-210 that are critical for the immune response or hypoxia are often overexpressed in cancers and leukemias. Given the high number of their target transcripts, their deregulation may have a number of deleterious consequences, depending on the cellular context. In this review, we focus on how the factors encoded by transcripts targeted by these five miRNAs, be they transcription factors, tumor-suppressors, or regulators of different signaling pathways, can deregulate the immune response and favor pro-tumor immunity. Furthermore, we expose how the misdirected action of the main regulators of these miRNAs, such as nuclear factor κB (NF-κB), activator protein-1 (AP-1), and signal transduction and activators of transcription (STAT) transcription factors, or AKT and transforming growth factor ß (TGFß) signaling pathways, can contribute to decrease anti-tumor immunity and enhance cell proliferation and oncogenesis. We conclude by briefly discussing about how these discoveries may possibly lead to the development of new miRNA-based cancer therapies.


Assuntos
Transformação Celular Neoplásica , Inflamação/imunologia , MicroRNAs/imunologia , Neoplasias/imunologia , Animais , Terapia Biológica , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunidade/genética , Inflamação/genética , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Evasão Tumoral
8.
Molecules ; 21(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657035

RESUMO

Recent years have seen the exploration of a puzzling number of compounds found in human diet that could be of interest for prevention or treatment of various pathologies. Although many of these natural products (NPs) have long been used as remedies, their molecular effects still remain elusive. With the advent of biotechnology revolution, NP studies turned from chemistry and biochemistry toward global analysis of gene expression. Hope is to use genetics to identify groups of patient for whom certain NPs or their derivatives may offer new preventive or therapeutic treatments. Recently, microRNAs have gained the statute of global regulators controlling cell homeostasis by regulating gene expression through genetic and epigenetic regulatory loops. Realization that certain plant polyphenols can modify microRNA expression and thus impact gene expression globally, initiated new, mainly in vitro studies, in particular to determine phytochemicals effects on inflammatory response, whose exacerbation has been linked to several disorders including cancer, auto-immune, metabolic, cardiovascular and neuro-inflammatory diseases. However, very few mechanistic insights have been provided, given the complexity of genetic regulatory networks implicated. In this review, we will concentrate on data showing the potential interest of some plant polyphenols in manipulating the expression of pro- and anti-inflammatory microRNAs in pathological conditions.

9.
Blood ; 120(13): 2631-8, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22723551

RESUMO

MiR-125b-1 maps at 11q24, a chromosomal region close to the epicenter of 11q23 deletions in chronic lymphocytic leukemias (CLLs). Our results establish that both aggressive and indolent CLL patients show reduced expression of miR-125b. Overexpression of miR-125b in CLL-derived cell lines resulted in the repression of many transcripts encoding enzymes implicated in cell metabolism. Metabolomics analyses showed that miR-125b overexpression modulated glucose, glutathione, lipid, and glycerolipid metabolism. Changes on the same metabolic pathways also were observed in CLLs. We furthermore analyzed the expression of some of miR-125b-target transcripts that are potentially involved in the aforementioned metabolic pathways and defined a miR-125b-dependent CLL metabolism-related transcript signature. Thus, miR-125b acts as a master regulator for the adaptation of cell metabolism to a transformed state. MiR-125b and miR-125b-dependent metabolites therefore warrant further investigation as possible novel therapeutic approaches for patients with CLL.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Linfócitos B/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Metabolômica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Proc Natl Acad Sci U S A ; 108(12): 4908-13, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383199

RESUMO

Infection-driven inflammation has been implicated in the pathogenesis of ~15-20% of human tumors. Expression of microRNA-155 (miR-155) is elevated during innate immune response and autoimmune disorders as well as in various malignancies. However, the molecular mechanisms providing miR-155 with its oncogenic properties remain unclear. We examined the effects of miR-155 overexpression and proinflammatory environment on the frequency of spontaneous hypoxanthine phosphoribosyltransferase (HPRT) mutations that can be detected based on the resistance to 6-thioguanine. Both miR-155 overexpression and inflammatory environment increased the frequency of HPRT mutations and down-regulated WEE1 (WEE1 homolog-S. pombe), a kinase that blocks cell-cycle progression. The increased frequency of HPRT mutation was only modestly attributable to defects in mismatch repair machinery. This result suggests that miR-155 enhances the mutation rate by simultaneously targeting different genes that suppress mutations and decreasing the efficiency of DNA safeguard mechanisms by targeting of cell-cycle regulators such as WEE1. By simultaneously targeting tumor suppressor genes and inducing a mutator phenotype, miR-155 may allow the selection of gene alterations required for tumor development and progression. Hence, we anticipate that the development of drugs reducing endogenous miR-155 levels might be key in the treatment of inflammation-related cancers.


Assuntos
Ciclo Celular , Hipoxantina Fosforribosiltransferase/metabolismo , MicroRNAs/biossíntese , Mutação , Neoplasias/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Genes Supressores de Tumor , Células HEK293 , Humanos , Hipoxantina Fosforribosiltransferase/genética , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Tioguanina/farmacologia
11.
J Sci Food Agric ; 93(13): 3155-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23674481

RESUMO

Besides synthesizing nutritive substances (proteins, fats and carbohydrates) for energy and growth, plants produce numerous non-energetic so-called secondary metabolites (mainly polyphenols) that allow them to protect themselves against infections and other types of hostile environments. Interestingly, these polyphenols often provide cells with valuable bioactive properties for the maintenance of their functions and homeostasis (signaling, gene regulation, protection against acquired or infectious diseases, etc.) both in humans and animals. Namely, from a nutritional point of view, and based on epidemiological data, it is now well accepted that the regular consumption of green vegetables, fruits and fibers has protective effects against the onset of cancer as well as of inflammatory, neurodegenerative, metabolic and cardiovascular diseases, and consequently increases the overall longevity. In particular, grapevine plants produce large amounts of a wide variety of polyphenols. The most prominent of those-resveratrol-has been shown to impair or delay cardiovascular alterations, cancer, inflammation, aging, etc. Until recently, the molecular bases of the pleiotropic effects of resveratrol remained largely unclear despite numerous studies on a variety of signaling pathways and the transcriptional networks that they control. However, it has been recently proposed that the protective properties of resveratrol may arise from its modulation of small non-coding regulatory RNAs, namely microRNAs. The aim of this review is to present up-to-date data on the control of microRNA expression by dietary phytophenols in different types of human cells, and their impact on cell differentiation, cancer development and the regulation of the inflammatory response.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Dieta , Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Fenóis/administração & dosagem , Plantas/química , Animais , Antioxidantes/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Fibras na Dieta , Frutas , Homeostase/efeitos dos fármacos , Humanos , Inflamação/prevenção & controle , MicroRNAs/fisiologia , Neoplasias/prevenção & controle , Polifenóis/administração & dosagem , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/administração & dosagem , Verduras
12.
Nucleic Acids Res ; 38(21): 7673-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20639536

RESUMO

MicroRNAs (miRNAs) are small regulatory RNAs targeting multiple effectors of cell homeostasis and development, whose malfunctions are associated with major pathologies such as cancer. Herein we show that GAM/ZFp/ZNF512B works within an intricate gene regulatory network involving cell-cycle regulators, TGFß effectors and oncogenic miRNAs of the miR-17-92 cluster. Thus, GAM impairs the transcriptional activation of the miR-17-92 promoter by c-Myc, downregulates miR-17-92 miRNAs differentially, and limits the activation of genes responsive to TGFß canonical pathway. In contrast, TGFß decreases GAM transcripts levels while differentially upregulating miR-17-92 miRNAs. In turn, miR-17, miR-20a and miR-92a-1 target GAM transcripts, thus establishing a feedback autoregulatory loop. GAM transcripts are also targeted by miRNAs of the let-7 family. GAM downregulates Drosha, the main effector of miRNA maturation in the nucleus, and interacts with it in a RNA-dependent manner. Finally, GAM modulates the levels of E2F1 and Ras, and increases apoptosis while reducing cell proliferation. We propose that GAM represents a new kind of vertebrate regulator aimed at balancing the opposite effects of regulators of cell homeostasis by increasing the robustness of gene circuitries controlling cell proliferation, differentiation and development.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular/genética , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas de Transporte/genética , Fator de Transcrição E2F1/metabolismo , Retroalimentação Fisiológica , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ribonuclease III/genética , Ativação Transcricional , Fator de Crescimento Transformador beta/farmacologia
13.
Front Mol Neurosci ; 15: 788301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185466

RESUMO

Aortic aneurism open repair surgery can cause spinal cord (SC) injury with 5-15% of patients developing paraparesis or paraplegia. Using a mouse model of transient aortic cross-clamping (ACC), we have previously found that the expression of proinflammatory microRNA miR-155 increases in motoneurons (MNs) and endothelial cells (ECs) of ischemic SCs, and that global miR-155 deletion decreases the percentage of paraplegia by 37.4% at 48-h post-ACC. Here, we investigated the cell-specific contribution of miR-155 in choline acetyltransferase-positive (ChAT+) neurons (that include all MNs of the SC) and ECs to SC injury after ACC. Mice lacking miR-155 in ChAT+ neurons (MN-miR-155-KO mice) developed 24.6% less paraplegia than control mice at 48-h post-ACC. In contrast, mice lacking miR-155 in ECs (ECs-miR-155-KO mice) experienced the same percentage of paraplegia as control mice, despite presenting smaller central cord edema. Unexpectedly, mice overexpressing miR-155 in ChAT+ neurons were less likely than control mice to develop early paraplegia during the first day post-ACC, however they reached the same percentage of paraplegia at 48-h. In addition, all mice overexpressing miR-155 in ECs (ECs-miR-155-KI mice) were paraplegic at 48-h post-ACC. Altogether, our results suggest that miR-155 activity in ChAT+ neurons protects the SC against ischemic injury during the first day post-ACC before becoming deleterious during the second day, which indicates that early and late paraplegias arise from different molecular malfunctions. These results point to the need to develop specific protective therapeutics aimed at inhibiting both the early and late deleterious events after open repair surgery of aortic aneurisms.

14.
Sci Rep ; 11(1): 7834, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837260

RESUMO

Both endovascular repair (EVR) and open repair (OR) surgery of thoraco-abdominal aortic aneurysms cause spinal cord (SC) injury that can lead to paraparesis or paraplegia. It has been assumed that mechanisms responsible for SC damage after EVR are similar to those after OR. This pilot study compared the pathophysiology of SC injury after EVR versus OR using a newly developed EVR dog model. An increasing number of stents similar to those used in patients were inserted in the aorta of three dogs to ensure thoracic or thoracic plus lumbar coverage. The aorta of OR dogs was cross-clamped for 45 min. Behavior assessment demonstrated unique patterns of proprioceptive ataxia and evolving paraparesis in EVR versus irreversible paraplegia in OR. MRI showed posterior signal in lumbar SC after EVR versus central cord edema after OR. Histopathology showed white matter edema in L3-L5 localized to the dorsal column medial lemniscus area associated with loss of myelin basic protein but not neurons after EVR, versus massive neuronal loss in the gray matter in L3-L5 after OR. Metabolome analysis demonstrates a distinctive chemical fingerprint of cellular processes in both interventions. Our results call for the development of new therapeutics tailored to these distinct pathophysiologic findings.


Assuntos
Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular/efeitos adversos , Prótese Vascular/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Complicações Pós-Operatórias/etiologia , Traumatismos da Medula Espinal/etiologia , Stents/efeitos adversos , Animais , Comportamento Animal , Angiografia por Tomografia Computadorizada/métodos , Modelos Animais de Doenças , Cães , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Paraplegia/etiologia , Projetos Piloto , Complicações Pós-Operatórias/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/diagnóstico por imagem , Resultado do Tratamento
15.
Carcinogenesis ; 31(9): 1561-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20622002

RESUMO

An inflammatory component is present in the microenvironment of most neoplastic tissues, including those not causally related to an obvious inflammatory process. Several microRNAs, and especially miR-155, play an essential role in both the innate and adaptative immune response. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural antioxidant with anti-inflammatory properties that is currently at the stage of preclinical studies for human cancer prevention. Here, we establish that, in human THP-1 monocytic cells as well as in human blood monocytes, resveratrol upregulates miR-663, a microRNA potentially targeting multiple genes implicated in the immune response. In THP-1 cells, miR-663 decreases endogenous activator protein-1 (AP-1) activity and impairs its upregulation by lipopolysaccharides (LPS), at least in part by directly targeting JunB and JunD transcripts. We further establish that the downregulation of AP-1 activity by resveratrol is miR-663 dependent and that the effects of resveratrol on both AP-1 activity and JunB levels are dose dependent. Finally, we show that resveratrol impairs the upregulation of miR-155 by LPS in a miR-663-dependent manner. Given the role of miR-155 in the innate immune response and the fact that it is upregulated in many cancers, our results suggest that manipulating miR-663 levels may help to optimize the use of resveratrol as both an anti-inflammatory and anticancer agent against malignancies associated with high levels of miR-155.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Monócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estilbenos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/metabolismo , Western Blotting , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Luciferases/metabolismo , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-jun/genética , RNA Mensageiro/genética , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
16.
Int J Med Sci ; 5(2): 73-9, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18392144

RESUMO

Micro-RNAs (miRNAs) are 19-24 nucleotide long non-coding RNAs that posttranscriptionally modulate gene expression. They are found in almost all species: viruses, plants, nematodes, fly, fish, mouse, human, and are implicated in a wide array of cellular and developmental processes. Microarray-based miRNA profiling brought to the discovery of miRNAs specific to different hematopoietic lineages. Furthermore, the functional assays performed in tissue cultures to discover miRNAs involved in immune responses in combination with the reports of miRNA-transgenic or miRNA -knockout mouse models has helped elucidating the miRNA roles in the development and function of immune system. Abnormal patterns of hematopoietic-specific miRNAs have been found in different types of cancer and miRNA based gene therapy is being considered as a potential technology of choice in immunological disorders and cancer. The purpose of this review is to discuss recent findings related with the expression and function of miRNAs in hematopoietic lineages.


Assuntos
Sistema Hematopoético/metabolismo , Sistema Imunitário/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Terapia Genética , Humanos , MicroRNAs/biossíntese
17.
Nat Clin Pract Rheumatol ; 4(10): 534-41, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18728632

RESUMO

MicroRNAs (miRNAs) are short noncoding RNA molecules that modulate the expression of multiple target genes at the post-transcriptional level and are implicated in a wide array of cellular and developmental processes. In hematopoietic cells, miRNA levels are dynamically regulated during lineage differentiation and also during the course of the immune response. Mouse models have provided good evidence for miRNAs being key players in the establishment of hematopoietic lineages. Furthermore, miRNA-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response to a wide range of pathogens, spontaneously emerging tumors, and autoimmune cells. Deregulation of hematopoietic-specific miRNA expression results in defects in both central and peripheral tolerance, hematopoietic malignancies, and sometimes both. Abnormal expression of miRNAs-which is implicated in inflammation-has also been found in patients with rheumatoid arthritis. These findings identify miRNAs as critical targets for immunomodulatory drug development.


Assuntos
Sistema Imunitário/fisiologia , MicroRNAs/genética , Doenças Reumáticas/genética , Doenças Reumáticas/imunologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Hematopoese/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Animais
18.
Medicines (Basel) ; 5(3)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987196

RESUMO

Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV) is a non-flavonoid dietary polyphenol with antioxidant, anti-inflammatory and anti-cancer properties that is primarily found in red berries. While RSV displays many beneficial effects in vitro, its actual effects in vivo or in animal models remain passionately debated. Recent publications suggest that RSV pleiotropic effects could arise from its capability to regulate the expression and activity of microRNAs, short regulators themselves capable of regulating up to several hundreds of target genes. In particular, RSV increases microRNA miR-663 expression in different human cell lines, suggesting that at least some of its multiple beneficial properties are through the modulation of expression of this microRNA. Indeed, the expression of microRNA miR-663 is reduced in certain cancers where miR-663 is considered to act as a tumor suppressor gene, as well as in other pathologies such as cardiovascular disorders. Target of miR-663 include genes involved in tumor initiation and/or progression as well as genes involved in pathologies associated with chronic inflammation. Here, we review the direct and indirect effects of RSV on the expression of miR-663 and its target transcripts, with emphasise on TGFβ1, and their expected health benefits, and argue that elucidating the molecular effects of different classes of natural compounds on the expression of microRNAs should help to identify new therapeutic targets and design new treatments.

19.
Curr Opin Pharmacol ; 37: 142-150, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29154194

RESUMO

The initiation and development or inflammatory bowel disease (IBD) and associated colorectal cancers, have been linked to inflammation. MicroRNAs are non-coding regulators of gene expression that have gained great attention due to their capability to regulate the expression of a number of target transcripts. It is now generally admitted that microRNAs are instrumental in gut pathologies, in particular through their targeting of transcripts encoding proteins of the intestinal barrier (IB) and their regulators. Intense research is conducted to identify microRNAs susceptible to be used as biomarkers and to design new therapeutic approaches based upon using synthetic microRNA mimics and inhibitors as well as finding new drugs capable to restore or modify microRNA expression in the context of gut pathologies.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Neoplasias/genética , Animais , Biomarcadores , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/metabolismo
20.
Ann N Y Acad Sci ; 1348(1): 97-106, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26190093

RESUMO

This review presents recent evidence implicating microRNAs (miRNAs) in the beneficial effects of resveratrol (trihydroxystilbene), a nonflavonoid plant polyphenol, with emphasis on its anti-inflammatory effects. Many diseases and pathologies have been linked, directly or indirectly, to inflammation. These include infections, injuries, atherosclerosis, diabetes mellitus, obesity, cancer, osteoarthritis, age-related macular degeneration, demyelination, and neurodegenerative diseases. Resveratrol can both decrease the secretion of proinflammatory cytokines (e.g., IL-6, IL-8, and TNF-α) and increase the production of anti-inflammatory cytokines; it also decreases the expression of adhesion proteins (e.g., ICAM-1) and leukocyte chemoattractants (e.g., MCP-1). Resveratrol's primary targets appear to be the transcription factors AP-1 and NF-κB, as well as the gene COX2. Although no mechanistic link between any particular miRNA and resveratrol has been identified, resveratrol effects depend at least in part upon the modification of the expression of a variety of miRNAs that can be anti-inflammatory (e.g., miR-663), proinflammatory (e.g., miR-155), tumor suppressing (e.g., miR-663), or oncogenic (e.g., miR-21).


Assuntos
Anti-Inflamatórios/farmacologia , MicroRNAs/fisiologia , Estilbenos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Ácidos Araquidônicos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Interferência de RNA , Resveratrol , Estilbenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA