Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 519(7543): 362-5, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25533961

RESUMO

Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homologue FtsZ establishes the cytokinetic ring that constricts during cell division. How such different roles of tubulin and FtsZ evolved is unknown. Studying Archaea may provide clues as these organisms share characteristics with Eukarya and Bacteria. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ X-ray crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of CetZ proteins in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Forma Celular , Haloferax volcanii/citologia , Haloferax volcanii/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Divisão Celular , Membrana Celular/metabolismo , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Movimento , Tubulina (Proteína)/química
2.
Mol Cell ; 46(3): 245-59, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22483621

RESUMO

Protein gradients play a central role in the spatial organization of cells, but the mechanisms of their formation are incompletely understood. This study analyzes the determinants responsible for establishing bipolar gradients of the ATPase MipZ, a key regulator of division site placement in Caulobacter crescentus. We have solved the crystal structure of MipZ in different nucleotide states, dissected its ATPase cycle, and investigated its interaction with FtsZ, ParB, and the nucleoid. Our results suggest that the polar ParB complexes locally stimulate the formation of ATP-bound MipZ dimers, which are then retained near the cell poles through association with chromosomal DNA. Due to their intrinsic ATPase activity, dimers eventually dissociate into freely diffusible monomers that undergo spontaneous nucleotide exchange and are recaptured by ParB. These findings clarify the molecular function of a conserved gradient-forming system and reveal mechanistic principles that might be commonly used to sustain protein gradients within cells.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Caulobacter crescentus/metabolismo , Dimerização , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Caulobacter crescentus/citologia , Divisão Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Replicação do DNA , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
3.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018575

RESUMO

The merlin-ERM (ezrin, radixin, moesin) family of proteins plays a central role in linking the cellular membranes to the cortical actin cytoskeleton. Merlin regulates contact inhibition and is an integral part of cell-cell junctions, while ERM proteins, ezrin, radixin and moesin, assist in the formation and maintenance of specialized plasma membrane structures and membrane vesicle structures. These two protein families share a common evolutionary history, having arisen and separated via gene duplication near the origin of metazoa. During approximately 0.5 billion years of evolution, the merlin and ERM family proteins have maintained both sequence and structural conservation to an extraordinary level. Comparing crystal structures of merlin-ERM proteins and their complexes, a picture emerges of the merlin-ERM proteins acting as switchable interaction hubs, assembling protein complexes on cellular membranes and linking them to the actin cytoskeleton. Given the high level of structural conservation between the merlin and ERM family proteins we speculate that they may function together.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurofibromina 2/metabolismo , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/química , Inibição de Contato , Proteínas do Citoesqueleto/química , Humanos , Proteínas de Membrana/química , Proteínas dos Microfilamentos/química , Modelos Moleculares , Neurofibromina 2/química , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Alinhamento de Sequência
4.
EMBO J ; 30(2): 364-78, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21139566

RESUMO

Cohesin's structural maintenance of chromosome 1 (Smc1) and Smc3 are rod-shaped proteins with 50-nm long intra-molecular coiled-coil arms with a heterodimerization domain at one end and an ABC-like nucleotide-binding domain (NBD) at the other. Heterodimerization creates V-shaped molecules with a hinge at their centre. Inter-connection of NBDs by Scc1 creates a tripartite ring within which, it is proposed, sister DNAs are entrapped. To investigate whether cohesin's hinge functions as a possible DNA entry gate, we solved the crystal structure of the hinge from Mus musculus, which like its bacterial counterpart is characterized by a pseudo symmetric heterodimeric torus containing a small channel that is positively charged. Mutations in yeast Smc1 and Smc3 that together neutralize the channel's charge have little effect on dimerization or association with chromosomes, but are nevertheless lethal. Our finding that neutralization reduces acetylation of Smc3, which normally occurs during replication and is essential for cohesion, suggests that the positively charged channel is involved in a major conformational change during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Modelos Moleculares , Animais , Western Blotting , Calorimetria , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/isolamento & purificação , Cristalização , Dimerização , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Coesinas
5.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583155

RESUMO

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Assuntos
Regiões 3' não Traduzidas , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Regiões 3' não Traduzidas/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mariposas/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Virulência/genética
6.
Nat Commun ; 15(1): 7360, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198401

RESUMO

Hypomethylating agents (HMAs) are frontline therapies for Myelodysplastic Neoplasms (MDS) and Acute Myeloid Leukemia (AML). However, acquired resistance and treatment failure are commonplace. To address this, we perform a genome-wide CRISPR-Cas9 screen in a human MDS-derived cell line, MDS-L, and identify TOPORS as a loss-of-function target that synergizes with HMAs, reducing leukemic burden and improving survival in xenograft models. We demonstrate that depletion of TOPORS mediates sensitivity to HMAs by predisposing leukemic blasts to an impaired DNA damage response (DDR) accompanied by an accumulation of SUMOylated DNMT1 in HMA-treated TOPORS-depleted cells. The combination of HMAs with targeting of TOPORS does not impair healthy hematopoiesis. While inhibitors of TOPORS are unavailable, we show that inhibition of protein SUMOylation with TAK-981 partially phenocopies HMA-sensitivity and DDR impairment. Overall, our data suggest that the combination of HMAs with inhibition of SUMOylation or TOPORS is a rational treatment option for High-Risk MDS (HR-MDS) or AML.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Sumoilação/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Feminino
7.
Proc Natl Acad Sci U S A ; 107(46): 19766-71, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20974911

RESUMO

Low copy number plasmids often depend on accurate partitioning systems for their continued survival. Generally, such systems consist of a centromere-like region of DNA, a DNA-binding adaptor, and a polymerizing cytomotive filament. Together these components drive newly replicated plasmids to opposite ends of the dividing cell. The Bacillus thuringiensis plasmid pBToxis relies on a filament of the tubulin/FtsZ-like protein TubZ for its segregation. By combining crystallography and electron microscopy, we have determined the structure of this filament. We explain how GTP hydrolysis weakens the subunit-subunit contact and also shed light on the partitioning of the plasmid-adaptor complex. The double helical superstructure of TubZ filaments is unusual for tubulin-like proteins. Filaments of ParM, the actin-like partitioning protein, are also double helical. We suggest that convergent evolution shapes these different types of cytomotive filaments toward a general mechanism for plasmid separation.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/química , Citoesqueleto/química , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/química , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/ultraestrutura , Citoesqueleto/ultraestrutura , Escherichia coli/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes de Fusão/química , Reprodutibilidade dos Testes , Tubulina (Proteína)/ultraestrutura
8.
Microlife ; 4: uqad011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223728

RESUMO

The bacterial flagellar motor (BFM) is a rotary nanomachine powered by the translocation of ions across the inner membrane through the stator complex. The stator complex consists of two membrane proteins: MotA and MotB (in H+-powered motors), or PomA and PomB (in Na+-powered motors). In this study, we used ancestral sequence reconstruction (ASR) to probe which residues of MotA correlate with function and may have been conserved to preserve motor function. We reconstructed 10 ancestral sequences of MotA and found four of them were motile in combination with contemporary Escherichia coli MotB and in combination with our previously published functional ancestral MotBs. Sequence comparison between wild-type (WT) E. coli MotA and MotA-ASRs revealed 30 critical residues across multiple domains of MotA that were conserved among all motile stator units. These conserved residues included pore-facing, cytoplasm-facing, and MotA-MotA intermolecular facing sites. Overall, this work demonstrates the role of ASR in assessing conserved variable residues in a subunit of a molecular complex.

9.
Commun Biol ; 6(1): 1158, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957226

RESUMO

Cryptophyte algae have a unique phycobiliprotein light-harvesting antenna that fills a spectral gap in chlorophyll absorption from photosystems. However, it is unclear how the antenna transfers energy efficiently to these photosystems. We show that the cryptophyte Hemiselmis andersenii expresses an energetically complex antenna comprising three distinct spectrotypes of phycobiliprotein, each composed of two αß protomers but with different quaternary structures arising from a diverse α subunit family. We report crystal structures of the major phycobiliprotein from each spectrotype. Two-thirds of the antenna consists of open quaternary form phycobiliproteins acting as primary photon acceptors. These are supplemented by a newly discovered open-braced form (~15%), where an insertion in the α subunit produces ~10 nm absorbance red-shift. The final components (~15%) are closed forms with a long wavelength spectral feature due to substitution of a single chromophore. This chromophore is present on only one ß subunit where asymmetry is dictated by the corresponding α subunit. This chromophore creates spectral overlap with chlorophyll, thus bridging the energetic gap between the phycobiliprotein antenna and the photosystems. We propose that the macromolecular organization of the cryptophyte antenna consists of bulk open and open-braced forms that transfer excitations to photosystems via this bridging closed form phycobiliprotein.


Assuntos
Criptófitas , Fotossíntese , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Clorofila
10.
Protein Sci ; 32(3): e4586, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721353

RESUMO

In addition to their membrane-bound chlorophyll a/c light-harvesting antenna, the cryptophyte algae have evolved a unique phycobiliprotein antenna system located in the thylakoid lumen. The basic unit of this antenna consists of two copies of an αß protomer where the α and ß subunits scaffold different combinations of a limited number of linear tetrapyrrole chromophores. While the ß subunit is highly conserved, encoded by a single plastid gene, the nuclear-encoded α subunits have evolved diversified multigene families. It is still unclear how this sequence diversity results in the spectral diversity of the mature proteins. By careful examination of three newly determined crystal structures in comparison with three previously obtained, we show how the α subunit amino acid sequences control chromophore conformations and hence spectral properties even when the chromophores are identical. Previously we have shown that α subunits control the quaternary structure of the mature αß.αß complex (either open or closed), however, each species appeared to only harbor a single quaternary form. Here we show that species of the Hemiselmis genus contain expressed α subunit genes that encode both distinct quaternary structures. Finally, we have discovered a common single-copy gene (expressed into protein) consisting of tandem copies of a small α subunit that could potentially scaffold pairs of light harvesting units. Together, our results show how the diversity of the multigene α subunit family produces a range of mature cryptophyte antenna proteins with differing spectral properties, and the potential for minor forms that could contribute to acclimation to varying light regimes.


Assuntos
Criptófitas , Estrutura Molecular , Clorofila A/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Criptófitas/metabolismo
11.
Sci Rep ; 12(1): 4805, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314715

RESUMO

Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 µM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 µM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.


Assuntos
Synechococcus , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Superfície Celular/metabolismo , Açúcares/metabolismo , Synechococcus/metabolismo , Zinco/metabolismo
12.
Nat Commun ; 12(1): 1890, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767155

RESUMO

Photosynthetic organisms have developed diverse antennas composed of chromophorylated proteins to increase photon capture. Cryptophyte algae acquired their photosynthetic organelles (plastids) from a red alga by secondary endosymbiosis. Cryptophytes lost the primary red algal antenna, the red algal phycobilisome, replacing it with a unique antenna composed of αß protomers, where the ß subunit originates from the red algal phycobilisome. The origin of the cryptophyte antenna, particularly the unique α subunit, is unknown. Here we show that the cryptophyte antenna evolved from a complex between a red algal scaffolding protein and phycoerythrin ß. Published cryo-EM maps for two red algal phycobilisomes contain clusters of unmodelled density homologous to the cryptophyte-αß protomer. We modelled these densities, identifying a new family of scaffolding proteins related to red algal phycobilisome linker proteins that possess multiple copies of a cryptophyte-α-like domain. These domains bind to, and stabilise, a conserved hydrophobic surface on phycoerythrin ß, which is the same binding site for its primary partner in the red algal phycobilisome, phycoerythrin α. We propose that after endosymbiosis these scaffolding proteins outcompeted the primary binding partner of phycoerythrin ß, resulting in the demise of the red algal phycobilisome and emergence of the cryptophyte antenna.


Assuntos
Criptófitas/fisiologia , Fotossíntese/fisiologia , Ficobilissomas/metabolismo , Porphyridium/metabolismo , Porphyridium/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Ficoeritrina/metabolismo , Plastídeos/genética , Simbiose/fisiologia
13.
Viruses ; 13(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34452479

RESUMO

It has been shown that the filamentous phage, Pf4, plays an important role in biofilm development, stress tolerance, genetic variant formation and virulence in Pseudomonas aeruginosa PAO1. These behaviours are linked to the appearance of superinfective phage variants. Here, we have investigated the molecular mechanism of superinfection as well as how the Pf4 phage can control host gene expression to modulate host behaviours. Pf4 exists as a prophage in PAO1 and encodes a homologue of the P2 phage repressor C and was recently named Pf4r. Through a combination of molecular techniques, ChIPseq and transcriptomic analyses, we show a critical site in repressor C (Pf4r) where a mutation in the site, 788799A>G (Ser4Pro), causes Pf4r to lose its function as the immunity factor against reinfection by Pf4. X-ray crystal structure analysis shows that Pf4r forms symmetric homo-dimers homologous to the E.coli bacteriophage P2 RepC protein. A mutation, Pf4r*, associated with the superinfective Pf4r variant, found at the dimer interface, suggests dimer formation may be disrupted, which derepresses phage replication. This is supported by multi-angle light scattering (MALS) analysis, where the Pf4r* protein only forms monomers. The loss of dimerisation also explains the loss of Pf4r's immunity function. Phenotypic assays showed that Pf4r increased LasB activity and was also associated with a slight increase in the percentage of morphotypic variants. ChIPseq and transcriptomic analyses suggest that Pf4r also likely functions as a transcriptional regulator for other host genes. Collectively, these data suggest the mechanism by which filamentous phages play such an important role in P. aeruginosa biofilm development.


Assuntos
Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Proteínas Repressoras/genética , Superinfecção/genética , Biofilmes/crescimento & desenvolvimento , Expressão Gênica , Infecções por Pseudomonas , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/virologia , Proteínas Repressoras/química , Superinfecção/virologia , Virulência
14.
Biophys Rev ; 10(5): 1427-1441, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30215194

RESUMO

The role of non-trivial quantum mechanical effects in biology has been the subject of intense scrutiny over the past decade. Much of the focus on potential "quantum biology" has been on energy transfer processes in photosynthetic light harvesting systems. Ultrafast laser spectroscopy of several light harvesting proteins has uncovered coherent oscillations dubbed "quantum beats" that persist for hundreds of femtoseconds and are putative signatures for quantum transport phenomena. This review describes the language and basic quantum mechanical phenomena that underpin quantum transport in open systems such as light harvesting and photosynthetic proteins, including the photosystem reaction centre. Coherent effects are discussed in detail, separating various meanings of the term, from delocalized excitations, or excitons, to entangled states and coherent transport. In particular, we focus on the time, energy and length scales of energy transport processes, as these are critical in understanding whether or not coherent processes are important. The role played by the protein in maintaining chromophore systems is analysed. Finally, the spectroscopic techniques that are used to probe energy transfer dynamics and that have uncovered the quantum beats are described with reference to coherent phenomena in light harvesting.

15.
Biophys Rev ; 10(5): 1443-1463, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30242555

RESUMO

Considerable debate surrounds the question of whether or not quantum mechanics plays a significant, non-trivial role in photosynthetic light harvesting. Many have proposed that quantum superpositions and/or quantum transport phenomena may be responsible for the efficiency and robustness of energy transport present in biological systems. The critical experimental observations comprise the observation of coherent oscillations or "quantum beats" via femtosecond laser spectroscopy, which have been observed in many different light harvesting systems. Part Two of this review aims to provide an overview of experimental observations of energy transfer in the most studied light harvesting systems. Length scales, derived from crystallographic studies, are combined with energy and time scales of the beats observed via spectroscopy. A consensus is emerging that most long-lived (hundreds of femtoseconds) coherent phenomena are of vibrational or vibronic origin, where the latter may result in coherent excitation transport within a protein complex. In contrast, energy transport between proteins is likely to be incoherent in nature. The question of whether evolution has selected for these non-trivial quantum phenomena may be an unanswerable question, as dense packings of chromophores will lead to strong coupling and hence non-trivial quantum phenomena. As such, one cannot discern whether evolution has optimised light harvesting systems for high chromophore density or for the ensuing quantum effects as these are inextricably linked and cannot be switched off.

16.
Structure ; 24(1): 105-115, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26688216

RESUMO

The structural effects of three missense mutations clinically linked to hypertrophic cardiomyopathy (HCM) and located in the central domains of cardiac myosin-binding protein C (cMyBP-C) have been determined using small-angle scattering, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Bioinformatics and modeling were used to initially predict the expected structural impacts and assess the broader implications for function based on sequence conservation patterns. The experimental results generally affirm the predictions that two of the mutations (D745G, P873H) disrupt domain folding, while the third (R820Q) is likely to be entirely solvent exposed and thus more likely to have its impact through its interactions within the sarcomere. Each of the mutations is associated with distinct disease phenotypes, with respect to severity, stage of onset, and end phase. The results are discussed in terms of understanding key structural features of these domains essential for healthy function and the role they may play in disease development.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/química , Mutação , Fenótipo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica
17.
Structure ; 24(11): 2000-2007, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720588

RESUMO

The nuclear magnetic resonance (NMR) structure of the tri-helix bundle (THB) of the m-domain plus C2 (ΔmC2) of myosin-binding protein C (MyBP-C) has revealed a highly flexible seven-residue linker between the structured THB and C2. Bioinformatics shows significant patterns of conservation across the THB-linker sequence, with the linker containing a strictly conserved serine in all MyBP-C isoforms. Clinically linked mutations further support the functional significance of the THB-linker region. NMR, small-angle X-ray scattering, and binding studies show the THB-linker plus the first ten residues of C2 undergo dramatic changes when ΔmC2 binds Ca2+-calmodulin, with the linker and C2 N-terminal residues contributing significantly to the affinity. Modeling of all available experimental data indicates that the THB tertiary structure must be disrupted to form the complex. These results are discussed in the context of the THB-linker and the N-terminal residues of C2 forming a polymorphic binding domain that could accommodate multiple binding partners in the dynamic sarcomere.


Assuntos
Calmodulina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Serina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Sequência Conservada , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo
18.
PLoS One ; 9(9): e107211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25203511

RESUMO

Escherichia coli (ETEC) strain H10407 contains a GTPase virulence factor, LeoA, which is encoded on a pathogenicity island and has been shown to enhance toxin release, potentially through vesicle secretion. By sequence comparisons and X-ray structure determination we now identify LeoA as a bacterial dynamin-like protein (DLP). Proteins of the dynamin family remodel membranes and were once thought to be restricted to eukaryotes. In ETEC H10407 LeoA localises to the periplasm where it forms a punctate localisation pattern. Bioinformatic analyses of leoA and the two upstream genes leoB and leoC suggest that LeoA works in concert with a second dynamin-like protein, made up of LeoB and LeoC. Disruption of the leoAB genes leads to a reduction in secretion of periplasmic Tat-GFP and outer membrane OmpA. Our data suggest a role for LeoABC dynamin-like proteins in potentiating virulence through membrane vesicle associated toxin secretion.


Assuntos
Dinaminas/genética , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Sequência de Aminoácidos , Biologia Computacional/métodos , DNA Bacteriano/genética , Ilhas Genômicas/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Virulência/genética , Fatores de Virulência/genética
19.
Annu Rev Biochem ; 75: 467-92, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16756499

RESUMO

Bacterial cells contain a variety of structural filamentous proteins necessary for the spatial regulation of cell shape, cell division, and chromosome segregation, analogous to the eukaryotic cytoskeletal proteins. The molecular mechanisms by which these proteins function are beginning to be revealed, and these proteins show numerous three-dimensional structural features and biochemical properties similar to those of eukaryotic actin and tubulin, revealing their evolutionary relationship. Recent technological advances have illuminated links between cell division and chromosome segregation, suggesting a higher complexity and organization of the bacterial cell than was previously thought.


Assuntos
Bactérias/citologia , Citoesqueleto/metabolismo , Actinas/química , Actinas/genética , Actinas/metabolismo , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Filamentos Intermediários/química , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
20.
Mol Microbiol ; 44(3): 663-74, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11994149

RESUMO

The bacterial septum appears to comprise a macromolecular assembly of essential cell division proteins (the 'septasome') that are responsible for physically dividing the cell during cytokinesis. FtsL and DivIC are essential components of this division machinery in Bacillus subtilis. We used yeast two-hybrid analysis as well as a variety of biochemical and biophysical methods to examine the proposed interaction between Bacillus subtilis FtsL and DivIC. We show that FtsL and DivIC are thermodynamically unstable proteins that are likely to be unfolded and therefore targeted for degradation unless stabilized by interactions with other components of the septasome. However, we show that this stabilization does not result from a direct interaction between FtsL and DivIC. We propose that the observed interdependence of DivIC and FtsL stability is a result of indirect interactions that are mediated by other septasomal proteins.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/citologia , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Divisão Celular , Dicroísmo Circular , Ponto Isoelétrico , Substâncias Macromoleculares , Proteínas de Membrana/química , Dados de Sequência Molecular , Nefelometria e Turbidimetria , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Termodinâmica , Técnicas do Sistema de Duplo-Híbrido , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA