Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 80, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882867

RESUMO

Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor ß (TGFß1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.


Assuntos
Nanofibras , Suínos , Animais , Camundongos , Compostos de Ósmio , Inflamação
2.
J Nanobiotechnology ; 19(1): 103, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849566

RESUMO

In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Colágeno/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Selênio/farmacologia , Alicerces Teciduais , Animais , Antibacterianos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Humanos , Teste de Materiais , Porosidade , Selênio/química , Engenharia Tecidual/métodos , Cicatrização
3.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658476

RESUMO

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Poliésteres/química , Polietilenoglicóis/química , Poliglactina 910/química , Materiais Biocompatíveis/química , Sobrevivência Celular , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Fenômenos Mecânicos , Estrutura Molecular , Polietilenoglicóis/síntese química , Poliglactina 910/síntese química , Polimerização , Reologia
4.
J Mech Behav Biomed Mater ; 115: 104249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340777

RESUMO

AIMS: The aim of this study was to answer the question whether our newly developed injectable biodegradable "self-setting" polymer-composite as a bone adhesive is a good "bone-glue" candidate to efficiently fix comminuted fractures of pig femoral bones used as an ex-vivo experimental model. METHODS: Mechanical properties of adhesive prepared from α-tricalcium phosphate (TCP) powder and thermogelling copolymer were optimized by selecting the appropriate composition with adhesion enhancers based on dopamine and sodium iodinate. Setting time and injectability were controlled by rheology. Ex-vivo experiments of fixed pig bones were provided in terms of either the three-point bending test of bending wedge type fractured pig femurs (with LCP) or the axial compression test of 45° oblique fractured femurs (without LCP) in physiological saline solution at 37 °C. Fractured bones treated with optimized adhesive before and after bending tests were imaged by X-ray microtomography (µCT). RESULTS: Based on the rheological measurement, the adhesive modified with both dopamine and sodium iodinate exhibited optimal thixotropic properties required for injection via thin 22 G needle. This optimal adhesive composition showed an 8 min lag phase (processing time) followed by fast increase in storage modulus at 37 °C up to 1 GPa within 110 min. Self-setting of dopamine/iodinate modified adhesive was completed in 48 h exhibiting the maximum strength at compression of 7.98 MPa ± 1.39 MPa. Whereas unmodified adhesive failed in glue-to-bone adhesion, dopamine and dopamine/iodinate modified adhesive used for 45° oblique fracture fixation showed good and similar strength at compression (3.05 and 2.79 MPa, respectively). However, significantly higher elasticity of about 250% exhibited adhesive with iodinate enhancer. Moreover, mechanical properties of B2 fractures fixed with both LCP and dopamine/iodinate adhesive were approaching closely to the properties of original bone. Excellent adhesion between the adhesive and the bone fragments was proved by µCT. CONCLUSION: The polymer-composite bone adhesive modified with dopamine/iodinate exhibited very good fixation ability of femoral artificial comminuted fractures in an experimental model.


Assuntos
Cimentos Ósseos , Fraturas do Fêmur , Animais , Fenômenos Biomecânicos , Placas Ósseas , Diáfises , Fraturas do Fêmur/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fixação de Fratura , Fixação Interna de Fraturas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA