Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(5): e17271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279205

RESUMO

Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies.


Assuntos
Ecossistema , Roedores , Animais , Roedores/genética , Etiópia , Fluxo Gênico , Repetições de Microssatélites , Variação Genética/genética , Genética Populacional
2.
Oecologia ; 205(2): 281-293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822898

RESUMO

Disturbances from rodent engineering and human activities profoundly impact ecosystem structure and functioning. Whilst we know that disturbances modulate plant communities, comprehending the mechanisms through which rodent and human disturbances influence the functional trait diversity and trait composition of plant communities is important to allow projecting future changes and to enable informed decisions in response to changing intensity of the disturbances. Here, we evaluated the changes in functional trait diversity and composition of Afroalpine plant communities in the Bale Mountains of Ethiopia along gradients of engineering disturbances of a subterranean endemic rodent, the giant root-rat (Tachyoryctes macrocephalus Rüppell 1842) and human activities (settlement establishment and livestock grazing). We conducted RLQ (co-inertia analysis) and fourth-corner analyses to test for trait-disturbance (rodent engineering/human activities) covariation. Overall, our results show an increase in plant functional trait diversity with increasing root-rat engineering and increasing human activities. We found disturbance specific association with traits. Specifically, we found strong positive association of larger seed mass with increasing root-rat fresh burrow density, rhizomatous vegetative propagation negatively associated with increasing root-rat old burrow, and stolonifereous vegetative propagation positively associated with presence of root-rat mima mound. Moreover, both leaf size and leaf nitrogen content were positively associated with livestock dung abundance but negatively with distance from settlement. Overall, our results suggest that disturbances by rodents filter plant traits related to survival and reproduction strategies, whereas human activities such as livestock grazing act as filters for traits related to leaf economics spectrum along acquisitive resource-use strategy.


Assuntos
Ecossistema , Gado , Etiópia , Animais , Roedores/fisiologia
3.
Ann Bot ; 128(7): 903-918, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34472580

RESUMO

BACKGROUND AND AIMS: Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). METHODS: The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS: Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS: This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.


Assuntos
Traqueófitas , Biodiversidade , Ecossistema , Variação Genética , Genética Populacional , Filogenia , Tibet
4.
Biol Lett ; 15(7): 20190357, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31337290

RESUMO

Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000-4300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grazing systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica-fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8-6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Belt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park.


Assuntos
Ecossistema , Incêndios , Carvão Vegetal , Etiópia , Humanos , Lagos
5.
Mol Ecol ; 22(20): 5237-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24118118

RESUMO

A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai-Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population-genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.


Assuntos
Evolução Molecular , Variação Genética , Genética Populacional , Modelos Genéticos , Picea/genética , Biodiversidade , Núcleo Celular/genética , China , Mudança Climática , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Funções Verossimilhança , Dados de Sequência Molecular , Análise de Sequência de DNA , Árvores/genética
6.
Ecol Evol ; 13(7): e10337, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465614

RESUMO

Human activities, directly and indirectly, impact ecological engineering activities of subterranean rodents. As engineering activities of burrowing rodents are affected by, and reciprocally affect vegetation cover via feeding, burrowing and mound building, human influence such as settlements and livestock grazing, could have cascading effects on biodiversity and ecosystem processes such as bioturbation. However, there is limited understanding of the relationship between human activities and burrowing rodents. The aim of this study was therefore to understand how human activities influence the ecological engineering activity of the giant root-rat (Tachyoryctes macrocephalus), a subterranean rodent species endemic to the Afroalpine ecosystem of the Bale Mountains of Ethiopia. We collected data on human impact, burrowing activity and vegetation during February and March of 2021. Using path analysis, we tested (1) direct effects of human settlement on the patterns of livestock grazing intensity, (2) direct and indirect impacts of humans and livestock grazing intensity on the root-rat burrow density and (3) whether human settlement and livestock grazing influence the effects of giant root-rat burrow density on vegetation and vice versa. We found lower levels of livestock grazing intensity further from human settlement than in its proximity. We also found a significantly increased giant root-rat burrow density with increasing livestock grazing intensity. Seasonal settlement and livestock grazing intensity had an indirect negative and positive effect on giant root-rat burrow density, respectively, both via vegetation cover. Analysing the reciprocal effects of giant root-rat on vegetation, we found a significantly decreased vegetation cover with increasing density of giant root-rat burrows, and indirectly with increasing livestock grazing intensity via giant root-rat burrow density. Our results demonstrate that giant root-rats play a synanthropic engineering role that affects vegetation structure and ecosystem processes.

7.
Plant Divers ; 44(4): 369-376, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967254

RESUMO

Elevation plays a crucial factor in the distribution of plants, as environmental conditions become increasingly harsh at higher elevations. Previous studies have mainly focused on the effects of large-scale elevational gradients on plants, with little attention on the impact of smaller-scale gradients. In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains. We found that the genetic structure (single, clonal, mosaic) of J. squamata shrubs is affected by differences in elevational gradients of only 150 m. Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower- or higher-elevation plots. Human activity can significantly affect genetic structure, as well as reproductive strategy and genetic diversity. Sub-populations at mid-elevations had the highest yield of seed cones, lower levels of asexual reproduction and higher levels of genetic diversity. This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations. Our findings provide new insights into the finer scale genetic structure of alpine shrubs, which may improve the conservation and management of shrublands, a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.

8.
Nat Commun ; 13(1): 2681, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562338

RESUMO

The Tibetan Plateau's Kobresia pastures store 2.5% of the world's soil organic carbon (SOC). Climate change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization accounting for the other third, and confirmed these results by comparison with a meta-analysis of 594 observations. The microbial community responded to the degradation through altered taxonomic composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a severe shift in microbial functioning. This may irreversibly alter the world´s largest alpine pastoral ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local food security, regional water quality and climate.


Assuntos
Pradaria , Microbiota , Carbono/análise , Ecossistema , Nitrogênio/análise , Solo , Microbiologia do Solo , Tibet
9.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712457

RESUMO

Today's ice caps and glaciers in Africa are restricted to the highest peaks, but during the Pleistocene, several mountains on the continent were extensively glaciated. However, little is known about regional differences in the timing and extent of past glaciations and the impact of paleoclimatic changes on the afro-alpine environment and settlement history. Here, we present a glacial chronology for the Ethiopian Highlands in comparison with other East African Mountains. In the Ethiopian Highlands, glaciers reached their maximum 42 to 28 thousand years ago before the global Last Glacial Maximum. The local maximum was accompanied by a temperature depression of 4.4° to 6.0°C and a ~700-m downward shift of the afro-alpine vegetation belt, reshaping the human and natural habitats. The chronological comparison reveals that glaciers in Eastern Africa responded in a nonuniform way to past climatic changes, indicating a regionally varying influence of precipitation, temperature, and orography on paleoglacier dynamics.

10.
BMC Evol Biol ; 10: 194, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20569425

RESUMO

BACKGROUND: Although allopatric speciation is viewed as the most common way in which species originate, allopatric divergence among a group of closely related species has rarely been examined at the population level through phylogeographic analysis. Here we report such a case study on eight putative cypress (Cupressus) species, which each have a mainly allopatric distribution in the Qinghai-Tibetan Plateau (QTP) and adjacent regions. The analysis involved sequencing three plastid DNA fragments (trnD-trnT, trnS-trnG and trnL-trnF) in 371 individuals sampled from populations at 66 localities. RESULTS: Both phylogenetic and network analyses showed that most DNA haplotypes recovered or haplotype-clustered lineages resolved were largely species-specific. Across all species, significant phylogeographic structure (N(ST) > G(ST), P < 0.05) implied a high correlation between haplotypes/lineages and geographic distribution. Two species, C. duclouxiana and C. chengiana, which are distributed in the eastern QTP region, contained more haplotypes and higher diversity than five species with restricted distributions in the western highlands of the QTP. The remaining species, C. funebris, is widely cultivated and contained very little cpDNA diversity. CONCLUSIONS: It is concluded that the formation of high mountain barriers separating deep valleys in the QTP and adjacent regions caused by various uplifts of the plateau since the early Miocene most likely promoted allopatric divergence in Cupressus by restricting gene flow and fixing local, species-specific haplotypes in geographically isolated populations. The low levels of intraspecific diversity present in most species might stem from population bottlenecks brought about by recurrent periods of unfavorable climate and more recently by the negative impacts of human activities on species' distributions. Our findings shed new light on the importance of geographical isolation caused by the uplift of the QTP on the development of high plant species diversity in the QTP biodiversity hotspot.


Assuntos
Cupressus/genética , Evolução Molecular , Genética Populacional , Filogenia , China , DNA de Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Geografia , Haplótipos , Análise de Sequência de DNA
11.
New Phytol ; 185(1): 332-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19761444

RESUMO

Because of heterogeneous topographies, high-mountain areas could harbor a significant pool of cryptic forest refugia (glacial microrefugia unrecognized by palaeodata), which, as a result of poor accessibility, have been largely overlooked. The juniper forests of the southern Tibetan Plateau, with one of the highest tree lines worldwide, are ideal for assessing the potential of high-mountain areas to harbor glacial refugia. Genetic evidence for Last Glacial Maximum (LGM) endurance of these microrefugia is presented using paternally inherited chloroplast markers. Five-hundred and ninety individuals from 102 populations of the Juniperus tibetica complex were sequenced at three polymorphic chloroplast regions. Significant interpopulation differentiation and phylogeographic structure were detected (G(ST) = 0.49, N(ST) = 0.72, N(ST) > G(ST), P < 0.01), indicating limited among-population gene flow. Of 62 haplotypes recovered, 40 were restricted to single populations. These private haplotypes and overall degrees of diversity were evenly spread among plateau and edge populations, strongly supporting the existence of LGM microrefugia throughout the present distribution range, partly well above 3500 m. These results mark the highest LGM tree lines known, illustrating the potential significance of high-mountain areas for glacial refugia. Furthermore, as the close vicinity of orographic rear-edge and leading-edge populations potentially allows gene flow, surviving populations could preserve the complete spectrum of rear-edge and leading-edge adaptations.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Camada de Gelo , Juniperus/genética , Polimorfismo Genético , Árvores/fisiologia , Sequência de Bases , Cloroplastos/genética , Geografia , Haplótipos , Juniperus/fisiologia , Tibet
12.
Front Plant Sci ; 10: 925, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354782

RESUMO

Understanding the interaction between large herbivores and pasture production, especially with respect to the grazing optimization hypothesis, is critical for pasture management and generating theoretical and testable predictions. However, the optimization hypothesis remains contradictory in alpine meadows on the Qinghai-Tibet Plateau (QTP). In this study, we tested the grazing optimization hypothesis using four yak-grazing intensities (no grazing, light grazing, moderate grazing and heavy grazing) in alpine meadow habitats from 2015 to 2017. The results indicated that species diversity did not differ significantly among grazing regimes during the experimental period. However, the aboveground net primary production (ANPP) under moderate grazing consistently significantly exceeded that in control enclosures over 3 years, confirming the grazing optimization hypothesis. Levels of overcompensation varied among grazing intensities and years, and grazing-induced plant compensation may only occur in the short term. The enhanced regrowth of Poaceae and Cyperaceae induced by yak grazing might contribute to the overall level of overcompensation by plant community. Our results strongly support the grazing optimization hypothesis in the context of alpine meadows grazed by yaks, emphasizing the complex interactions between ANPP, herbivores and other ecological factors in alpine meadows on the QTP. These findings provide new insights for the development of an ecological conservation strategy that will help restore this fragile ecosystem and balance the seemingly incompatible requirements of animal husbandry.

13.
Ecol Evol ; 9(24): 14498-14511, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938536

RESUMO

Recent advances in the understanding of the evolution of the Asian continent challenge the long-held belief of a faunal immigration into the Himalaya. Spiny frogs of the genus Nanorana are a characteristic faunal group of the Himalaya-Tibet orogen (HTO). We examine the phylogeny of these frogs to explore alternative biogeographic scenarios for their origin in the Greater Himalaya, namely, immigration, South Tibetan origin, strict vicariance. We sequenced 150 Nanorana samples from 62 localities for three mitochondrial (1,524 bp) and three nuclear markers (2,043 bp) and complemented the data with sequence data available from GenBank. We reconstructed a gene tree, phylogenetic networks, and ancestral areas. Based on the nuDNA, we also generated a time-calibrated species tree. The results revealed two major clades (Nanorana and Quasipaa), which originated in the Lower Miocene from eastern China and subsequently spread into the HTO (Nanorana). Five well-supported subclades are found within Nanorana: from the East, Central, and Northwest Himalaya, the Tibetan Plateau, and the southeastern Plateau margin. The latter subclade represents the most basal group (subgenus Chaparana), the Plateau group (Nanorana) represents the sister clade to all species of the Greater Himalaya (Paa). We found no evidence for an east-west range expansion of Paa along the Himalaya, nor clear support for a strict vicariance model. Diversification in each of the three Himalayan subclades has probably occurred in distinct areas. Specimens from the NW Himalaya are placed basally relative to the highly diverse Central Himalayan group, while the lineage from the Tibetan Plateau is placed within a more terminal clade. Our data indicate a Tibetan origin of Himalayan Nanorana and support a previous hypothesis, which implies that a significant part of the Himalayan biodiversity results from primary diversification of the species groups in South Tibet before this part of the HTO was uplifted to its recent heights.

14.
Science ; 365(6453): 583-587, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395781

RESUMO

Studies of early human settlement in alpine environments provide insights into human physiological, genetic, and cultural adaptation potentials. Although Late and even Middle Pleistocene human presence has been recently documented on the Tibetan Plateau, little is known regarding the nature and context of early persistent human settlement in high elevations. Here, we report the earliest evidence of a prehistoric high-altitude residential site. Located in Africa's largest alpine ecosystem, the repeated occupation of Fincha Habera rock shelter is dated to 47 to 31 thousand years ago. The available resources in cold and glaciated environments included the exploitation of an endemic rodent as a key food source, and this played a pivotal role in facilitating the occupation of this site by Late Pleistocene hunter-gatherers.


Assuntos
Altitude , Camada de Gelo , Ocupações/história , Características de Residência/história , Aclimatação/genética , Animais , Etiópia , Alimentos/história , História Antiga , Humanos , Paleontologia , Roedores
15.
Sci Total Environ ; 648: 754-771, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30134213

RESUMO

With 450,000 km2Kobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.

16.
Ambio ; 37(4): 272-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18686506

RESUMO

This paper provides information about the distribution, structure, and ecology of the world's largest alpine ecosystem, the Kobresia pygmaea pastures in the southeastern Tibetan plateau. The environmental importance of these Cyperaceae mats derives from the extremely firm turf, which protects large surfaces against erosion, including the headwaters of the Huang He, Yangtze, Mekong, Salween, and Brahmaputra. The emphasis of the present article is on the climate-driven evolution and recent dynamics of these mats under the grazing impact of small mammals and livestock. Considering pedological analyses, radiocarbon datings, and results from exclosure experiments, we hypothesize that the majority of K. pygmaea mats are human-induced and replace forests, scrub, and taller grasslands. At present, the carrying capacity is increasingly exceeded, and reinforced settlement of nomads threatens this ecosystem especially in its drier part, where small mammals become strong competitors with livestock and the removal of the turf is irreversible. Examples of rehabilitation measures are given.


Assuntos
Cyperaceae/crescimento & desenvolvimento , Ecossistema , Animais , Tibet
17.
Ecol Evol ; 6(7): 1977-95, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27099706

RESUMO

Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai-Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well-differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (F ST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.

18.
Zootaxa ; 4028(1): 102-20, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26624298

RESUMO

The genus Thermophis includes the two species, T. baileyi and T. zhaoermii, which differ morphologically, geographically and molecularly. Recently, a third Thermophis species was described from Shangri-La, northern Yunnan Province, China, and named T. shangrila. The new species was based on morphological and genetic data derived from three specimens. However, the morphological features used to delimit this species seem vague, because they may fall within the range of intraspecific variation of T. zhaoermii. Furthermore, the reported genetic differences in nuclear data are questionable. They likely resulted from a misinterpretation probably due to alignment/analytical flaws or sample/sequence mix-up. Here, we used partial sequences of three mitochondrial (CO1, ND4, cytb) genes and one nuclear (c-mos) gene to analyse the genetic variation between and within species of Thermophis. We inferred the phylogeny using Bayesian Inference and Maximum Likelihood approaches and present additional morphological data that contribute to the knowledge on intraspecific variation in the genus. Our results indicate lacking robustness in the distinguishing morphological features and in the genetic differentiation of T. shangrila and highlight the need for more detailed morphological and molecular studies from a substantially larger sample.


Assuntos
Colubridae/classificação , Colubridae/genética , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , China , Colubridae/anatomia & histologia , Colubridae/crescimento & desenvolvimento , DNA Mitocondrial/genética , Feminino , Deriva Genética , Variação Genética , Masculino , Dados de Sequência Molecular , Tamanho do Órgão , Filogenia
19.
Sci Rep ; 5: 10216, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977142

RESUMO

All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper.


Assuntos
Evolução Biológica , Cloroplastos/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Juniperus/genética , Variação Genética , Genética Populacional , Geografia , Filogenia , Tibet
20.
Sci Total Environ ; 505: 1213-24, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461119

RESUMO

The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with (13)CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C ha(-1)), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C m(-2) d(-1) in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.


Assuntos
Carbono/análise , Pradaria , Altitude , Ciclo do Carbono , Radioisótopos de Carbono/análise , Cyperaceae/fisiologia , Ecossistema , Meio Ambiente , Poaceae/fisiologia , Solo , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA