Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mod Pathol ; 37(9): 100539, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880352

RESUMO

EGFR aberrations are reported in a subset of myofibroblastic lesions with kinase domain duplication (EGFR-KDD) and exon 20 mutations being assigned to infantile fibrosarcomas (IFS), mesoblastic nephroma, and fibrous hamartoma of infancy (FHI), respectively. In this retrospective study, we correlated molecular findings with the histomorphology of 14 myofibroblastic lesions harboring such genetic changes identified by NGS. We additionally performed DNA methylation profiling (DNAmp) and immunohistochemistry. Lesions were from 10 males and 4 females with a mean age of 3 years (range, 0.3-14) and occurred subcutaneously in the upper limbs (n = 5), lower limbs (n = 3), back/thorax (n = 5), and the nasal cavity (n = 1). Eleven were cured by surgery, including 1 relapsed case. Two patients were lost to follow-up. One case was very recent, and the patient was biopsied. Histologically, the lesions showed a wide spectrum varying from classic FHI (n = 9) to IFS (n = 1) or lipofibromatosis-like tumors (LFT-like) (n = 2) or dermatofibrosarcoma protuberans-like (DFSP-like) (n = 1) to a predominantly myxoid spindle cell lesion (n = 1). Immunohistochemically, all neoplasms stained with CD34, whereas S100 was positive in 2/14. EGFR expression was observed in 9/10 cases. Molecularly, the IFS and 1 LFT-like harbored EGFR-KDD, whereas an exon 20 mutation was identified in all FHI, 1 LFT-like, the DFSP-like, and in predominant myxoid spindle cell lesion. By DNAmp, all but 2 cases formed a well-defined cluster, demonstrating that these lesions are also epigenetically related. In conclusion, EGFR kinase domain aberrations found in FHI, IFS, LFT-like, DFSP-like, and a spindle cell lesion with a predominant myxoid stroma of children and adolescents showed that these neoplasms with a broad morphologic spectrum belong to the group of protein kinase-related lesions with a distinct epigenetic signature. Molecular analyses, including DNAmp, help to identify and characterize this emerging category and become mandatory when targeted treatment is considered.

2.
Pediatr Blood Cancer ; 71(8): e31126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837659

RESUMO

INTRODUCTION: Patients affected by metastatic germ cell tumors may occasionally experience enlargement of masses with concurrent normalization of tumor markers during or after chemotherapy. This phenomenon is described as growing teratoma syndrome (GTS). The aim of the pre sent study is to assess the prevalence of GTS in the pediatric population and its implications in terms of surgical outcome. PATIENTS AND METHODS: The clinical notes of patients diagnosed with stage III and IV malignant germ cell tumors from January 2010 until December 2020 at our Institution were retrospectively reviewed. The prevalence of GTS, treatment strategies, survival, and outcome were analyzed. RESULTS: Thirty-three patients with high-stage malignant germ cell tumors were diagnosed in our institution in the analyzed period. Nine patients (28%) had radiologic evidence of enlargement of persistent masses with normal markers after chemotherapy; these patients were classified as GTS patients. All nine patients underwent resection of metastatic lymph nodes, and six had surgery on visceral metastases. In six patients, radical excision of all metastatic sites was achieved; five patients are alive and in complete remission, while one died because of peri-operative complications. Out of the three patients who could not achieve radical excision of the metastases, two died of progressive disease, and one is alive with progressive disease. CONCLUSIONS: Patients affected by GTS have a risk of progression of chemotherapy-resistant disease and death. Radical surgical excision is essential to achieve disease control and long-term survival.


Assuntos
Teratoma , Humanos , Teratoma/cirurgia , Teratoma/patologia , Teratoma/epidemiologia , Teratoma/mortalidade , Teratoma/tratamento farmacológico , Masculino , Adolescente , Criança , Estudos Retrospectivos , Prevalência , Feminino , Prognóstico , Taxa de Sobrevida , Pré-Escolar , Seguimentos , Síndrome , Neoplasias Testiculares/cirurgia , Neoplasias Testiculares/patologia , Neoplasias Testiculares/epidemiologia , Neoplasias Testiculares/mortalidade
3.
J Pediatr Hematol Oncol ; 46(5): e272-e276, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912835

RESUMO

BACKGROUND/AIM: 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is a diagnostic tool widely used in adult oncology and some pediatric oncological settings. There are no established recommendations for the use of this imaging modality in pediatric malignant germ cell tumors (mGCT), however. Our aim is to evaluate the role of 18F-FDG PET/CT in the restaging of mGCT after chemotherapy in children and adolescents. METHODS: We retrospectively reviewed patients with mGCT treated in Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) centers who underwent 18F-FDG PET/CT between 2011 and 2021. RESULTS: Seventeen patients (median age 13 y) were included in the study. In 14 patients, 18F-FDG PET/CT was performed at diagnosis; 12 showed pathologic uptake. The 2 18F-FDG PET/CT negative cases were histologically defined as yolk sac tumor (YST) and mixed (chorioncarcinoma, YST). Nine of the 12 patients who had pathologic 18F-FDG PET/CT at diagnosis repeated the examination after neoadjuvant chemotherapy, before, second look surgery. In 5 cases, no pathologic uptake was evident. Histology showed necrosis alone in 4 cases and necrosis and mature teratoma in 1. In 3 of the 6 cases with pathologic uptake (2 of 6 patients did not perform the examination at diagnosis), histology showed persistence of malignant component, whereas in the remaining 3 cases, necrosis and mature teratoma were present. CONCLUSION: In our review of a series of children with mGCT, 18F-FDG PET/CT after neoadjuvant chemotherapy showed 1 of 5 false negatives and was unable to discriminate between residual malignant component and mature teratoma.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Embrionárias de Células Germinativas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Adolescente , Criança , Masculino , Neoplasias Embrionárias de Células Germinativas/diagnóstico por imagem , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/patologia , Estudos Retrospectivos , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Pré-Escolar , Compostos Radiofarmacêuticos
5.
Acta Neuropathol Commun ; 12(1): 8, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216991

RESUMO

The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors introduced the new tumor type CNS tumor with BCOR internal tandem duplication (ITD), characterized by a distinct DNA methylation profile and peculiar histopathological features, including a circumscribed growth pattern, ependymoma-like perivascular pseudorosettes, microcystic pattern, absent or focal GFAP immunostaining, OLIG2 positivity, and BCOR immunoreactivity. We describe a rare case of a CNS tumor in a 45-year-old man with histopathological and immunohistochemical features overlapping the CNS tumor with BCOR internal tandem duplication (ITD) but lacking BCOR immunostaining and BCOR ITD. Instead, the tumor showed CREBBP::BCORL1 fusion and pathogenic mutations in BCOR and CREBBP, along with a DNA methylation profile matching the "CNS tumor with EP300:BCOR(L1) fusion" methylation class. Two CNS tumors with fusions between CREBBP, or its paralog EP300, and BCORL1, and approximately twenty CNS tumors with CREBBP/EP300::BCOR fusions have been reported to date. They exhibited similar ependymoma-like features or a microcystic pattern, along with focal or absent GFAP immunostaining, and shared the same DNA methylation profile. Given their morphological and epigenetic similarities, circumscribed CNS tumors with EP300/CREBBP::BCOR(L1) fusions and CNS tumors with BCOR ITD may represent variants of the same tumor type. The ependymoma-like aspect coupled with the lack of diffuse GFAP immunostaining and the presence of OLIG2 positivity are useful clues for recognizing these tumors in histopathological practice. The diagnosis should be confirmed after testing for BCOR(L1) gene fusions and BCOR ITD.


Assuntos
Neoplasias do Sistema Nervoso Central , Ependimoma , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias do Sistema Nervoso Central/genética , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteína de Ligação a CREB/genética
6.
Brain Pathol ; : e13283, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946128

RESUMO

The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.

7.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061217

RESUMO

Background and purpose: Differentiating pediatric posterior fossa (PF) tumors such as medulloblastoma (MB), ependymoma (EP), and pilocytic astrocytoma (PA) remains relevant, because of important treatment and prognostic implications. Diffusion kurtosis imaging (DKI) has not yet been investigated for discrimination of pediatric PF tumors. Estimating diffusion values from whole-tumor-based (VOI) segmentations may improve diffusion measurement repeatability compared to conventional region-of-interest (ROI) approaches. Our purpose was to compare repeatability between ROI and VOI DKI-derived diffusion measurements and assess DKI accuracy in discriminating among pediatric PF tumors. Materials and methods: We retrospectively analyzed 34 children (M, F, mean age 7.48 years) with PF tumors who underwent preoperative examination on a 3 Tesla magnet, including DKI. For each patient, two neuroradiologists independently segmented the whole solid tumor, the ROI of the area of maximum tumor diameter, and a small 5 mm ROI. The automated analysis pipeline included inter-observer variability, statistical, and machine learning (ML) analyses. We evaluated inter-observer variability with coefficient of variation (COV) and Bland-Altman plots. We estimated DKI metrics accuracy in discriminating among tumor histology with MANOVA analysis. In order to account for class imbalances, we applied SMOTE to balance the dataset. Finally, we performed a Random Forest (RF) machine learning classification analysis based on all DKI metrics from the SMOTE dataset by partitioning 70/30 the training and testing cohort. Results: Tumor histology included medulloblastoma (15), pilocytic astrocytoma (14), and ependymoma (5). VOI-based measurements presented lower variability than ROI-based measurements across all DKI metrics and were used for the analysis. DKI-derived metrics could accurately discriminate between tumor subtypes (Pillai's trace: p < 0.001). SMOTE generated 11 synthetic observations (10 EP and 1 PA), resulting in a balanced dataset with 45 instances (34 original and 11 synthetic). ML analysis yielded an accuracy of 0.928, which correctly predicted all but one lesion in the testing set. Conclusions: VOI-based measurements presented improved repeatability compared to ROI-based measurements across all diffusion metrics. An ML classification algorithm resulted accurate in discriminating PF tumors on a SMOTE-generated dataset. ML techniques based on DKI-derived metrics are useful for the discrimination of pediatric PF tumors.

8.
NPJ Precis Oncol ; 8(1): 92, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637626

RESUMO

In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.

9.
Clin Epigenetics ; 16(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178234

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) account for 3-10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. RESULTS: We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two clusters mainly distinguished by H3K27me3 epigenetic signature. Exploring the copy number variation, high-grade tumors showed frequent chromosomal aberrations and CDKN2A/B loss significantly impacted on survival in the MPNSTs cohort. CONCLUSION: DNAm profiling is a useful tool in diagnostic work-up of MPNSTs. Its application in a retrospective series collected during pre-molecular era contributed to classify morphologic mimics. The methylation group MPNST-like is a 'hybrid' category in pediatrics including high-grade and low-grade tumors mainly characterized by TRK alterations.


Assuntos
Neoplasias Ósseas , Neurofibrossarcoma , Rabdomiossarcoma , Sarcoma , Humanos , Criança , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Histonas/metabolismo , Metilação de DNA , Estudos Retrospectivos , Variações do Número de Cópias de DNA , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Proteínas Tirosina Quinases , Ribonuclease III , RNA Helicases DEAD-box
11.
Front Mol Neurosci ; 17: 1268038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544524

RESUMO

The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.

12.
Eur J Hum Genet ; 32(7): 819-826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38528056

RESUMO

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.


Assuntos
Anormalidades Múltiplas , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Mosaicismo , Proteínas de Neoplasias , Doenças Vestibulares , Humanos , Doenças Vestibulares/genética , Doenças Vestibulares/diagnóstico , Face/anormalidades , Doenças Hematológicas/genética , Doenças Hematológicas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Proteínas de Neoplasias/genética , Criança , Pré-Escolar , Adolescente , Mutação em Linhagem Germinativa , Lactente , Fenótipo , Adulto
13.
Cancer Lett ; 588: 216711, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423245

RESUMO

Five-year glioblastoma (GBM) survivors (LTS) are the minority of the isocitrate dehydrogenase (IDH)-wild-type GBM patients, and their molecular fingerprint is still largely unexplored. This multicenter retrospective study analyzed a large LTS-GBM cohort from nine Italian institutions and molecularly characterized a subgroup of patients by mutation, DNA methylation (DNAm) and copy number variation (CNV) profiling, comparing it to standard survival GBM. Mutation scan allowed the identification of pathogenic variants in most cases, showing a similar mutational spectrum in both groups, and highlighted TP53 as the most commonly mutated gene in the LTS group. We confirmed DNAm as a valuable tool for GBM classification with a diagnostic refinement by using brain tumor classifier v12.5. LTS were more heterogeneous with more cases classified as diffuse pediatric high-grade glioma subtypes and having peculiar CNVs. We observed a global higher methylation in CpG islands and in gene promoters of LTS with methylation levels of distinct gene promoters correlating with prognosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Criança , Glioblastoma/patologia , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Variações do Número de Cópias de DNA , Neoplasias Encefálicas/patologia , Mutação , Prognóstico , Metilação de DNA , Sobreviventes
14.
Neuro Oncol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717379

RESUMO

BACKGROUND: The term Gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been abandoned since molecular GC-associated features have not been established yet. METHODS: We conducted a multinational retrospective study of 104 children and adolescents with GC providing comprehensive clinical and (epi-)genetic characterization. RESULTS: Median overall survival (OS) was 15.5 months (interquartile range, 10.9-27.7) with a 2-years survival rate of 28%. Histopathological grading correlated significantly with median OS: CNS WHO grade II: 47.8 months (25.2-55.7); grade III: 15.9 months (11.4-26.3); grade IV: 10.4 months (8.8-14.4). By DNA methylation profiling (n=49), most tumors were classified as pediatric-type diffuse high-grade glioma (pedHGG), H3-/IDH-wildtype (n=31/49, 63.3%) with enriched subclasses pedHGG_RTK2 (n=19), pedHGG_A/B (n=6), and pedHGG_MYCN (n=5), but only one pedHGG_RTK1 case. Within the pedHGG, H3-/IDH-wildtype subgroup, recurrent alterations in EGFR (n=10) and BCOR (n=9) were identified. Additionally, we observed structural aberrations in chromosome 6 in 16/49 tumors (32.7%) across tumor types. In the pedHGG, H3-/IDH-wildtype subgroup TP53 alterations had a significant negative effect on OS. CONCLUSION: Contrary to previous studies, our representative pediatric GC study provides evidence that GC has a strong predilection to arise on the background of specific molecular features (especially pedHGG_RTK2, pedHGG_A/B, EGFR and BCOR mutations, chromosome 6 rearrangements).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA