Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 506, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627354

RESUMO

Robotic assistance in minimally invasive surgery offers numerous advantages for both patient and surgeon. However, the lack of force feedback in robotic surgery is a major limitation, and accurately estimating tool-tissue interaction forces remains a challenge. Image-based force estimation offers a promising solution without the need to integrate sensors into surgical tools. In this indirect approach, interaction forces are derived from the observed deformation, with learning-based methods improving accuracy and real-time capability. However, the relationship between deformation and force is determined by the stiffness of the tissue. Consequently, both deformation and local tissue properties must be observed for an approach applicable to heterogeneous tissue. In this work, we use optical coherence tomography, which can combine the detection of tissue deformation with shear wave elastography in a single modality. We present a multi-input deep learning network for processing of local elasticity estimates and volumetric image data. Our results demonstrate that accounting for elastic properties is critical for accurate image-based force estimation across different tissue types and properties. Joint processing of local elasticity information yields the best performance throughout our phantom study. Furthermore, we test our approach on soft tissue samples that were not present during training and show that generalization to other tissue properties is possible.


Assuntos
Técnicas de Imagem por Elasticidade , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Fenômenos Mecânicos , Procedimentos Cirúrgicos Robóticos/métodos , Elasticidade , Imagens de Fantasmas , Técnicas de Imagem por Elasticidade/métodos , Tomografia de Coerência Óptica
2.
J Imaging ; 9(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754934

RESUMO

Computed tomography (CT) is a widely used examination technique that usually requires a compromise between image quality and radiation exposure. Reconstruction algorithms aim to reduce radiation exposure while maintaining comparable image quality. Recently, unsupervised deep learning methods have been proposed for this purpose. In this study, a promising sparse-view reconstruction method (posterior temperature optimized Bayesian inverse model; POTOBIM) is tested for its clinical applicability. For this study, 17 whole-body CTs of deceased were performed. In addition to POTOBIM, reconstruction was performed using filtered back projection (FBP). An evaluation was conducted by simulating sinograms and comparing the reconstruction with the original CT slice for each case. A quantitative analysis was performed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). The quality was assessed visually using a modified Ludewig's scale. In the qualitative evaluation, POTOBIM was rated worse than the reference images in most cases. A partially equivalent image quality could only be achieved with 80 projections per rotation. Quantitatively, POTOBIM does not seem to benefit from more than 60 projections. Although deep learning methods seem suitable to produce better image quality, the investigated algorithm (POTOBIM) is not yet suitable for clinical routine.

3.
IEEE Trans Biomed Eng ; 70(11): 3064-3072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37167045

RESUMO

OBJECTIVE: Optical coherence elastography (OCE) allows for high resolution analysis of elastic tissue properties. However, due to the limited penetration of light into tissue, miniature probes are required to reach structures inside the body, e.g., vessel walls. Shear wave elastography relates shear wave velocities to quantitative estimates of elasticity. Generally, this is achieved by measuring the runtime of waves between two or multiple points. For miniature probes, optical fibers have been integrated and the runtime between the point of excitation and a single measurement point has been considered. This approach requires precise temporal synchronization and spatial calibration between excitation and imaging. METHODS: We present a miniaturized dual-fiber OCE probe of 1 mm diameter allowing for robust shear wave elastography. Shear wave velocity is estimated between two optics and hence independent of wave propagation between excitation and imaging. We quantify the wave propagation by evaluating either a single or two measurement points. Particularly, we compare both approaches to ultrasound elastography. RESULTS: Our experimental results demonstrate that quantification of local tissue elasticities is feasible. For homogeneous soft tissue phantoms, we obtain mean deviations of 0.15 ms-1 and 0.02 ms-1 for single-fiber and dual-fiber OCE, respectively. In inhomogeneous phantoms, we measure mean deviations of up to 0.54 ms-1 and 0.03 ms-1 for single-fiber and dual-fiber OCE, respectively. CONCLUSION: We present a dual-fiber OCE approach that is much more robust in inhomogeneous tissues. Moreover, we demonstrate the feasibility of elasticity quantification in ex-vivo coronary arteries. SIGNIFICANCE: This study introduces an approach for robust elasticity quantification from within the tissue.

4.
IEEE Trans Med Robot Bionics ; 4(1): 94-105, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582701

RESUMO

In pathology and legal medicine, the histopathological and microbiological analysis of tissue samples from infected deceased is a valuable information for developing treatment strategies during a pandemic such as COVID-19. However, a conventional autopsy carries the risk of disease transmission and may be rejected by relatives. We propose minimally invasive biopsy with robot assistance under CT guidance to minimize the risk of disease transmission during tissue sampling and to improve accuracy. A flexible robotic system for biopsy sampling is presented, which is applied to human corpses placed inside protective body bags. An automatic planning and decision system estimates optimal insertion point. Heat maps projected onto the segmented skin visualize the distance and angle of insertions and estimate the minimum cost of a puncture while avoiding bone collisions. Further, we test multiple insertion paths concerning feasibility and collisions. A custom end effector is designed for inserting needles and extracting tissue samples under robotic guidance. Our robotic post-mortem biopsy (RPMB) system is evaluated in a study during the COVID-19 pandemic on 20 corpses and 10 tissue targets, 5 of them being infected with SARS-CoV-2. The mean planning time including robot path planning is 5.72±167s. Mean needle placement accuracy is 7.19± 422mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA