Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15864, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982108

RESUMO

In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.


Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Anticorpos de Cadeia Única , Humanos , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Fosfoproteínas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Biblioteca de Peptídeos
2.
Front Cell Dev Biol ; 11: 1151223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266450

RESUMO

During AD pathology, Tau protein levels progressively increase from early pathological stages. Tau altered expression causes an unbalance of Tau subcellular localization in the cytosol and in the nuclear compartment leading to synaptic dysfunction, neuronal cell death and neurodegeneration as a consequence. Due to the relevant role of epigenetic remodellers in synaptic activity in physiology and in neurodegeneration, in particular of TRIM28 and HDAC1, we investigated the relationship between Tau and these epigenetic factors. By molecular, imaging and biochemical approaches, here we demonstrate that Tau altered expression in the neuronal cell line SH-SY5y does not alter TRIM28 and HDAC1 expression but it induces a subcellular reduction of HDAC1 in the nuclear compartment. Remarkably, HDAC1 reduced activity modulates the expression of synaptic genes in a way comparable to that observed by Tau increased levels. These results support a competitive relationship between Tau levels and HDAC1 subcellular localization and nuclear activity, indicating a possible mechanism mediating the alternative role of Tau in the pathological alteration of synaptic genes expression.

3.
PNAS Nexus ; 2(9): pgad282, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731949

RESUMO

COVID-19 has represented an issue for global health since its outbreak in March 2020. It is now evident that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Here, several strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated on cellular extracts, subcellular fractions, and brain tissue. The viral proteins spike, nucleocapsid, and membrane were overexpressed in SH-SY5Y cells, and the direct interaction and effect on Tau phosphorylation were checked using immunoblot experiments. Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Our data support the hypothesis that SARS-CoV-2 infection in the central nervous system triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.

4.
Nat Commun ; 11(1): 2835, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503983

RESUMO

Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Bainha de Mielina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Astrócitos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Regulação para Baixo , Técnicas de Introdução de Genes , Células HEK293 , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Camundongos Transgênicos , Mutação , Bainha de Mielina/patologia , Cultura Primária de Células , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA