Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 84(10): 103507, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24188274

RESUMO

This work isolated the cause of the observed discrepancy between the electron temperature (T(e)) measurements before and after the JET Core LIDAR Thomson Scattering (TS) diagnostic was upgraded. In the upgrade process, stray light filters positioned just before the detectors were removed from the system. Modelling showed that the shift imposed on the stray light filters transmission functions due to the variations in the incidence angles of the collected photons impacted plasma measurements. To correct for this identified source of error, correction factors were developed using ray tracing models for the calibration and operational states of the diagnostic. The application of these correction factors resulted in an increase in the observed T(e), resulting in the partial if not complete removal of the observed discrepancy in the measured T(e) between the JET core LIDAR TS diagnostic, High Resolution Thomson Scattering, and the Electron Cyclotron Emission diagnostics.

2.
Rev Sci Instrum ; 80(3): 033504, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334919

RESUMO

A new endoscope aiming at transferring the image of a poloidal section of the Tore Supra plasma to a fast camera able to record frames at a speed up to 4800 frames per second at full resolution, or much faster for a limited number of pixel, has been installed on Tore Supra. First movies showing the light emission associated to fast phenomena such as plasma start up, disruptions or gas and pellet injections have been produced.

3.
Rev Sci Instrum ; 79(10): 10F509, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044654

RESUMO

The equatorial vis/IR wide angle viewing system is present in four ITER diagnostic equatorial ports. This instrument will cover a large field of view with high spatial and temporal resolutions, to provide real time temperature measurements of plasma facing components, spectral data in the visible range, information on runaway electrons, and pellet tracking. This diagnostic needs to be reliable, precise, and long lasting. Its design is driven by both the tokamak severe environment and the high performances required for machine protection. The preliminary design phase is ongoing. Paramount issues are being tackled, relative to wide spectral band optical design, material choice, and optomechanical difficulties due to the limited space available for this instrument in the ports, since many other diagnostics and services are also present. Recent progress of the diagnostic optical design and status of associated R&D are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA