Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398343

RESUMO

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Mucosa Intestinal/metabolismo , Caracteres Sexuais , Maturação do Esperma/fisiologia , Animais , Ácido Cítrico/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Expressão Gênica , Janus Quinases/metabolismo , Masculino , RNA-Seq , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Testículo/metabolismo
2.
Nature ; 630(8016): 392-400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811741

RESUMO

Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.


Assuntos
Drosophila melanogaster , Intestinos , Caracteres Sexuais , Traqueia , Animais , Feminino , Masculino , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Intestinos/anatomia & histologia , Traqueia/anatomia & histologia , Traqueia/fisiologia , Tamanho do Órgão , Músculos/anatomia & histologia , Músculos/fisiologia , Ligantes , Fatores de Crescimento de Fibroblastos/metabolismo , Especificidade da Espécie
3.
Nat Rev Mol Cell Biol ; 23(4): 227-228, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197611
4.
Cell ; 156(1-2): 69-83, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439370

RESUMO

During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives--rather than responds to--metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture.


Assuntos
Drosophila melanogaster/fisiologia , Neovascularização Fisiológica , Neuropeptídeos/metabolismo , Animais , Cálcio/metabolismo , Sistema Digestório/irrigação sanguínea , Humanos , Modelos Animais , Neovascularização Patológica , Neurônios/metabolismo , Oxigênio/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
5.
Nature ; 587(7834): 455-459, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116314

RESUMO

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Mães , Neurônios/metabolismo , Reprodução/fisiologia , Estruturas Animais/citologia , Estruturas Animais/inervação , Estruturas Animais/metabolismo , Animais , Regulação do Apetite/fisiologia , Feminino , Hiperfagia/metabolismo , Masculino , Neuropeptídeos/metabolismo
6.
Nature ; 580(7802): 263-268, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269334

RESUMO

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Intestinos/fisiologia , Zinco/metabolismo , Animais , Drosophila melanogaster/genética , Enterócitos/metabolismo , Feminino , Preferências Alimentares , Homeostase , Insetos Vetores , Insulina/metabolismo , Ativação do Canal Iônico , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lisossomos/metabolismo , Masculino , Oócitos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Xenopus
7.
Nature ; 617(7962): 677-678, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138060
8.
Nature ; 530(7590): 344-8, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887495

RESUMO

Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realization that cell-intrinsic mechanisms play important and persistent roles. Here we use the Drosophila melanogaster intestine to investigate the nature and importance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncovers the key role this identity has in controlling organ size, reproductive plasticity and response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms that control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognized.


Assuntos
Células-Tronco Adultas/citologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Intestinos/citologia , Tamanho do Órgão , Caracteres Sexuais , Animais , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Reprodução , Ribonucleoproteínas/metabolismo , Diferenciação Sexual/genética
9.
EMBO J ; 36(20): 3029-3045, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28899900

RESUMO

Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss-of-function disorders such as Hirschsprung disease.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Mucosa Intestinal/fisiologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Drosophila , Regulação da Expressão Gênica , Humanos , Camundongos , Via de Sinalização Wnt
11.
Annu Rev Genet ; 47: 377-404, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24016187

RESUMO

The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.


Assuntos
Sistema Digestório/anatomia & histologia , Drosophila melanogaster/anatomia & histologia , Animais , Dieta , Digestão , Sistema Digestório/imunologia , Sistema Digestório/inervação , Sistema Digestório/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Metabolismo Energético , Sistema Nervoso Entérico/fisiologia , Células Enteroendócrinas/fisiologia , Células Epiteliais/citologia , Hormônios Gastrointestinais/fisiologia , Interações Hospedeiro-Patógeno , Absorção Intestinal , Larva , Longevidade , Muco/fisiologia
13.
PLoS Genet ; 14(2): e1007203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29389999

RESUMO

Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/embriologia , Processamento Alternativo/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Proteínas do Tecido Nervoso/genética , Ovário/embriologia , Ovário/metabolismo , Proteínas de Ligação a RNA/fisiologia , Testículo/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(30): 12177-82, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778427

RESUMO

The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDF's established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Ureter/fisiologia , Animais , AMP Cíclico/metabolismo , Primers do DNA/genética , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
15.
Semin Cell Dev Biol ; 23(6): 614-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22248674

RESUMO

The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for "transceptors" in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis.


Assuntos
Trato Gastrointestinal/metabolismo , Fenômenos Fisiológicos da Nutrição , Animais , Proteínas de Transporte/metabolismo , Alimentos , Humanos , Insulina/metabolismo , Modelos Animais
16.
Dev Biol ; 381(1): 97-106, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23773803

RESUMO

In Drosophila, growth takes place during the larval stages until the formation of the pupa. Starvation delays pupariation to allow prolonged feeding, ensuring that the animal reaches an appropriate size to form a fertile adult. Pupariation is induced by a peak of the steroid hormone ecdysone produced by the prothoracic gland (PG) after larvae have reached a certain body mass. Local downregulation of the insulin/insulin-like growth factor signaling (IIS) activity in the PG interferes with ecdysone production, indicating that IIS activity in the PG couples the nutritional state to development. However, the underlying mechanism is not well understood. In this study we show that the secreted Imaginal morphogenesis protein-Late 2 (Imp-L2), a growth inhibitor in Drosophila, is involved in this process. Imp-L2 inhibits the activity of the Drosophila insulin-like peptides by direct binding and is expressed by specific cells in the brain, the ring gland, the gut and the fat body. We demonstrate that Imp-L2 is required to regulate and adapt developmental timing to nutritional conditions by regulating IIS activity in the PG. Increasing Imp-L2 expression at its endogenous sites using an Imp-L2-Gal4 driver delays pupariation, while Imp-L2 mutants exhibit a slight acceleration of development. These effects are strongly enhanced by starvation and are accompanied by massive alterations of ecdysone production resulting most likely from increased Imp-L2 production by neurons directly contacting the PG and not from elevated Imp-L2 levels in the hemolymph. Taken together our results suggest that Imp-L2-expressing neurons sense the nutritional state of Drosophila larvae and coordinate dietary information and ecdysone production to adjust developmental timing under starvation conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Ecdisterona/metabolismo , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Larva/crescimento & desenvolvimento , Mutação , Neurônios/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Fatores de Transcrição/genética , Transgenes
17.
EMBO Rep ; 13(11): 945-7, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23059980

RESUMO

Around 100 researchers gathered at the eighteenth EMBO Conference on 'The Molecular and Developmental Biology of Drosophila', which took place in Crete in June 2012. Whether deconstructing or integrating at the genetic, cellular or organ level, the talks highlighted the synergy of combining methods, approaches and disciplines in this increasingly versatile model system.


Assuntos
Drosophila/genética , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insetos
18.
Dev Biol ; 369(2): 261-76, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22796650

RESUMO

During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Galinhas , Primers do DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes de Insetos , Locomoção/fisiologia , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
19.
Nat Commun ; 14(1): 3076, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248237

RESUMO

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.


Assuntos
Receptor Nuclear Órfão DAX-1 , Receptor alfa de Estrogênio , Hipotálamo , Kisspeptinas , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo
20.
Dev Biol ; 353(1): 72-80, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21354130

RESUMO

In the Drosophila ventral nerve cord, the three pairs of Capability neuropeptide-expressing Va neurons are exclusively found in the second, third and fourth abdominal segments (A2-A4). To address the underlying mechanisms behind such segment-specific cell specification, we followed the developmental specification of these neurons. We find that Va neurons are initially generated in all ventral nerve cord segments and progress along a common differentiation path. However, their terminal differentiation only manifests itself in A2-A4, due to two distinct mechanisms: segment-specific programmed cell death (PCD) in posterior segments, and differentiation to an alternative identity in segments anterior to A2. Genetic analyses reveal that the Hox homeotic genes are involved in the segment-specific appearance of Va neurons. In posterior segments, the Hox gene Abdominal-B exerts a pro-apoptotic role on Va neurons, which involves the function of several RHG genes. Strikingly, this role of Abd-B is completely opposite to its role in the segment-specific apoptosis of other classes of neuropeptide neurons, the dMP2 and MP1 neurons, where Abd-B acts in an anti-apoptotic manner. In segments A2-A4 we find that abdominal A is important for the terminal differentiation of Va cell fate. In the A1 segment, Ultrabithorax acts to specify an alternate Va neuron fate. In contrast, in thoracic segments, Antennapedia suppresses the Va cell fate. Thus, Hox genes act in a multi-faceted manner to control the segment-specific appearance of the Va neuropeptide neurons in the ventral nerve cord.


Assuntos
Padronização Corporal , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Genes Homeobox/fisiologia , Neurônios/citologia , Neuropeptídeos/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Neuropeptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA