Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Q Rev Biophys ; 53: e5, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115014

RESUMO

Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.


Assuntos
Antibacterianos/química , Membrana Celular/metabolismo , Corantes de Alimentos/química , Histatinas/química , Peptídeos/química , Animais , Transporte Biológico/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Monócitos/efeitos dos fármacos , Fosfatos/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus pneumoniae/efeitos dos fármacos
2.
Langmuir ; 37(10): 3057-3066, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33645991

RESUMO

The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.

3.
Neurobiol Dis ; 134: 104629, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669752

RESUMO

The loss of native function of the DJ-1 protein has been linked to the development of Parkinson's (PD) and other neurodegenerative diseases. Here we show that DJ-1 aggregates into ß-sheet structured soluble and fibrillar aggregates in vitro under physiological conditions and that this process is promoted by the oxidation of its catalytic Cys106 residue. This aggregation resulted in the loss of its native biochemical glyoxalase function and in addition oxidized DJ-1 aggregates were observed to localize within Lewy bodies, neurofibrillary tangles and amyloid plaques in human PD and Alzheimer's (AD) patients' post-mortem brain tissue. These findings suggest that the aggregation of DJ-1 may be a critical player in the development of the pathology of PD and AD and demonstrate that loss of DJ-1 function can happen through DJ-1 aggregation. This could then contribute to AD and PD disease onset and progression.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Proteína Desglicase DJ-1/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Corpos de Lewy/química , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Doença de Parkinson/metabolismo , Placa Amiloide/química , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/patologia , Conformação Proteica em Folha beta , Proteína Desglicase DJ-1/química
4.
Anal Bioanal Chem ; 412(19): 4619-4628, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32472144

RESUMO

Extracellular vesicles (EVs) are lipid bilayer-bounded particles that are actively synthesized and released by cells. The main components of EVs are lipids, proteins, and nucleic acids and their composition is characteristic to their type and origin, and it reveals the physiological and pathological conditions of the parent cells. The concentration and protein composition of EVs closely relate to their functions; therefore, total protein determination can assist in EV-based diagnostics and disease prognosis. Here, we present a simple, reagent-free method based on attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to quantify the protein content of EV samples without any further sample preparation. After calibration with bovine serum albumin, the protein concentration of red blood cell-derived EVs (REVs) were investigated by ATR-FTIR spectroscopy. The integrated area of the amide I band was calculated from the IR spectra of REVs, which was proportional to the protein quantity in the sample' regardless of its secondary structure. A spike test and a dilution test were performed to determine the ability to use ATR-FTIR spectroscopy for protein quantification in EV samples, which resulted in linearity with R2 values as high as 0.992 over the concentration range of 0.08 to 1 mg/mL. Additionally, multivariate calibration with the partial least squares (PLS) regression method was carried out on the bovine serum albumin and EV spectra. R2 values were 0.94 for the calibration and 0.91 for the validation set. The results indicate that ATR-FTIR measurements provide a reliable method for reagent-free protein quantification of EVs. Graphical abstract.


Assuntos
Eritrócitos/química , Vesículas Extracelulares/química , Proteínas/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Bovinos , Humanos , Indicadores e Reagentes , Análise dos Mínimos Quadrados , Soroalbumina Bovina/análise
5.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158297

RESUMO

Magnetic iron oxide containing MCM-41 silica (MM) with ~300 nm particle size was developed. The MM material before or after template removal was modified with NH2- or COOH-groups and then grafted with PEG chains. The anticancer drug tamoxifen was loaded into the organic groups' modified and PEGylated nanoparticles by an incipient wetness impregnation procedure. The amount of loaded drug and the release properties depend on whether modification of the nanoparticles was performed before or after the template removal step. The parent and drug-loaded samples were characterized by XRD, N2 physisorption, thermal gravimetric analysis, and ATR FT-IR spectroscopy. ATR FT-IR spectroscopic data and density functional theory (DFT) calculations supported the interaction between the mesoporous silica surface and tamoxifen molecules and pointed out that the drug molecule interacts more strongly with the silicate surface terminated by silanol groups than with the surface modified with carboxyl groups. A sustained tamoxifen release profile was obtained by an in vitro experiment at pH = 7.0 for the PEGylated formulation modified by COOH groups after the template removal. Free drug and formulated tamoxifen samples were further investigated for antiproliferative activity against MCF-7 cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos , Óxido Ferroso-Férrico , Polietilenoglicóis , Dióxido de Silício , Tamoxifeno , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacocinética , Óxido Ferroso-Férrico/farmacologia , Humanos , Células MCF-7 , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia
6.
Chembiochem ; 20(12): 1578-1590, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30720915

RESUMO

Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored. To address the relevance of such interactions with regard to structure and function, we have tested the effects of the therapeutic drug suramin on the membrane activity and antibacterial efficiency of CM15, a potent hybrid AMP. The results provided insight into a dynamic system in which peptide interaction with lipid bilayers is interfered with by the competitive binding of CM15 to suramin, resulting in an equilibrium dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests showed that when CM15⋅suramin complex formation dominates over membrane binding, antimicrobial activity is abolished. On the basis of this case study, it is proposed that small-molecule secondary structure regulators can modify AMP function and that this should be considered and could potentially be exploited in future development of AMP-based antimicrobial agents.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Suramina , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Cultivadas , Dicroísmo Circular/métodos , Escherichia coli , Humanos , Bicamadas Lipídicas/química , Estrutura Secundária de Proteína , Suramina/química , Suramina/farmacologia
7.
Chembiochem ; 19(6): 545-551, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29237098

RESUMO

Extracellular vesicles (EVs) are currently in scientific focus, as they have great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, and thus, additional insight into their molecular-level properties, membrane-protein interactions, and membrane rigidity is still needed. We here demonstrate the use of red-blood-cell-derived EVs (REVs) that polarized light spectroscopy techniques, linear and circular dichroism, can provide molecular-level structural information on these systems. Flow-linear dichroism (flow-LD) measurements show that EVs can be oriented by shear force and indicate that hemoglobin molecules are associated to the lipid bilayer in freshly released REVs. During storage, this interaction ceases; this is coupled to major protein conformational changes relative to the initial state. Further on, the degree of orientation gives insight into vesicle rigidity, which decreases in time parallel to changes in protein conformation. Overall, we propose that both linear dichroism and circular dichroism spectroscopy can provide simple, rapid, yet efficient ways to track changes in the membrane-protein interactions of EV components at the molecular level, which may also give insight into processes occurring during vesiculation.


Assuntos
Vesículas Extracelulares/metabolismo , Luz , Fosfatidilcolinas/metabolismo , Dicroísmo Circular , Eritrócitos/química , Eritrócitos/metabolismo , Vesículas Extracelulares/química , Humanos , Lipossomos/química , Lipossomos/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Microscopia de Polarização , Fosfatidilcolinas/química
8.
Langmuir ; 34(48): 14652-14660, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30395475

RESUMO

Polyelectrolyte (PE)/surfactant (S) mixtures play a distinguished role in the efficacy of shampoos and toiletries primarily due to the deposition of PE/S precipitates on the hair surface upon dilution of the formulations. The classical interpretation of this phenomenon is a simple composition change during which the system enters the two-phase region. Recent studies, however, indicated that the phase properties of PE/S mixtures could be strongly affected by the applied solution preparation protocols. In the present work, we aimed at studying the impact of dilution on the nonequilibrium aggregate formation in the sodium poly(styrenesulfonate) (NaPSS)/dodecyltrimethylammonium bromide (DTAB)/NaCl system. Mixtures prepared with hundredfold dilution of concentrated NaPSS/DTAB/NaCl solutions in water were compared with those ones made by rapid mixing of dilute NaPSS/NaCl and DTAB/NaCl solutions. The study revealed that the phase-separation concentration range as well as the composition, morphology, and visual appearance of the precipitates were remarkably different in the two cases. These observations clearly demonstrate that the dilution/deposition process is also related to the nonequilibrium phase properties of PE/S systems, which can be used to modulate the efficiency of various commercial applications.

9.
Biochim Biophys Acta Biomembr ; 1859(3): 459-466, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989744

RESUMO

Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different extracellular vesicle subpopulations. This proposed 'spectroscopic protein-to-lipid ratio', combined with the outlined spectrum-analysis protocol is valid also for low sample concentrations (0.15-0.05mg/ml total protein content) and can carry information about the presence of other non-vesicular formations such as aggregated proteins, lipoproteins and immune complexes. Detailed analysis of IR data reveals compositional changes of extracellular vesicles subpopulations: second derivative spectra suggest changes in protein composition from parent cell towards exosomes favoring proteins with ß-turns and unordered motifs at the expense of intermolecular ß-sheet structures. The IR-based protein-to-lipid assessment protocol was tested also for red blood cell derived microvesicles for which similar values were obtained. The potential applicability of this technique for fast and efficient characterization of vesicular components is high as the investigated samples require no further preparations and all the different molecular species can be determined in the same sample. The results indicate that ATR-FTIR measurements provide a simple and reproducible method for the screening of extracellular vesicle preparations. It is hoped that this sophisticated technique will have further impact in extracellular vesicle research.


Assuntos
Amidas/química , Vesículas Extracelulares/química , Carbono/química , Difusão Dinâmica da Luz , Eritrócitos/citologia , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Hidrogênio/química , Células Jurkat , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Biochim Biophys Acta ; 1848(5): 1092-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25620772

RESUMO

Effects of ursolic acid on the structural and morphological characteristics of dipalmitoyl lecithin(DPPC)-water system was studied by using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS), freeze-fracture method combined with transmission electron-microscopy (FF-TEM) and infrared spectroscopy (FT-IR). The surface of the uncorrelated lipid system is rippled or grained and a huge number of small, presumably unilamellar vesicles are present if the UA/DPPC molar ratio is 0.1 mol/mol or higher. Besides the destroyed layer packing of regular multilamellar vesicles, non-bilayer (e.g. cubic or hexagonal) local structures are evidenced by SAXS and FF-TEM methods. The ability of UA to induce non-bilayer structures in hydrated DPPC system originates from the actual geometry form of associated lipid and UA molecules as concluded from the FT-IR measurements and theoretical calculations. Beside numerous beneficial e.g. chemopreventive and chemotherapeutic effect of ursolic acid against cancer, their impact to modify the lipid bilayers can be utilized in liposomal formulations.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Membranas Artificiais , Triterpenos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Técnica de Fratura por Congelamento , Lipossomos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanopartículas , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Triterpenos/farmacologia , Água/química , Difração de Raios X , Ácido Ursólico
12.
Biochim Biophys Acta ; 1828(2): 661-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23031572

RESUMO

The thermotropic and structural effects of low molecular weight poly(malic acid) (PMLA) on fully hydrated multilamellar dipalmitoylphosphatidylcholine (DPPC)-water systems were investigated using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and freeze-fracture transmission electron microscopy (FFTEM). Systems of 20wt% DPPC concentration and 1 and 5wt% PMLA to lipid ratios were studied. The PMLA derivatives changed the thermal behavior of DPPC significantly and caused a drastic loss in correlation between lamellae in the three characteristic thermotropic states (i.e., in the gel, rippled gel and liquid crystalline phases). In the presence of PBS or NaCl, the perturbation was more moderate. The structural behavior on the atomic level was revealed by FTIR spectroscopy. The molecular interactions between DPPC and PMLA were simulated via modeling its measured infrared spectra, and their peculiar spectral features were interpreted. Through this interpretation, the poly(malic acid) is inferred to attach to the headgroups of the phospholipids through hydrogen bonds between the free hydroxil groups of PMLA and the phosphodiester groups of DPPC.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Malatos/química , Polímeros/química , Água/química , Bioquímica/métodos , Varredura Diferencial de Calorimetria , Simulação por Computador , Sistemas de Liberação de Medicamentos , Técnica de Fratura por Congelamento , Géis/química , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão/métodos , Modelos Químicos , Ligação Proteica , Espalhamento de Radiação , Cloreto de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Raios X
13.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607044

RESUMO

Among patients on peritoneal dialysis (PD), 50-80% will develop peritoneal fibrosis, and 0.5-4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS). Here, we investigated the role of extracellular vesicles (EVs) on the TGF-ß- and PDGF-B-driven processes of peritoneal fibrosis. EVs were isolated from the peritoneal dialysis effluent (PDE) of children receiving continuous ambulatory PD. The impact of PDE-EVs on the epithelial-mesenchymal transition (EMT) and collagen production of the peritoneal mesothelial cells and fibroblasts were investigated in vitro and in vivo in the chlorhexidine digluconate (CG)-induced mice model of peritoneal fibrosis. PDE-EVs showed spherical morphology in the 100 nm size range, and their spectral features, CD63, and annexin positivity were characteristic of EVs. PDE-EVs penetrated into the peritoneal mesothelial cells and fibroblasts and reduced their PDE- or PDGF-B-induced proliferation. Furthermore, PDE-EVs inhibited the PDE- or TGF-ß-induced EMT and collagen production of the investigated cell types. PDE-EVs contributed to the mesothelial layer integrity and decreased the submesothelial thickening of CG-treated mice. We demonstrated that PDE-EVs significantly inhibit the PDGF-B- or TGF-ß-induced fibrotic processes in vitro and in vivo, suggesting that EVs may contribute to new therapeutic strategies to treat peritoneal fibrosis and other fibroproliferative diseases.


Assuntos
Vesículas Extracelulares , Diálise Peritoneal , Fibrose Peritoneal , Criança , Humanos , Camundongos , Animais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fator de Crescimento Transformador beta/metabolismo , Peritônio , Diálise Peritoneal/efeitos adversos , Colágeno/metabolismo
14.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654023

RESUMO

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Assuntos
Antibacterianos , Membrana Celular , Simulação de Dinâmica Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Microscopia Eletrônica , Bactérias Gram-Negativas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
15.
J Colloid Interface Sci ; 650(Pt B): 1097-1104, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467638

RESUMO

HYPOTHESIS: Sculpting liquids into different shapes is usually based on the interfacial interactions of functionalized nanoparticles or polymers with specific ligands, leading to exciting material properties due to the combination of the mobility of liquid components with the solid-like characteristic of the arrested liquid/liquid interface. There is an intense interest in novel structured liquids produced from simple compounds with versatile application potentials. Complexes of oppositely charged commercial polyelectrolytes and traditional aliphatic surfactants are good candidates for this goal since they reveal rich structural features and could adsorb at various interfaces. However, they have not been applied yet for structuring liquids. EXPERIMENTS: The interfacial interactions and film formation between aqueous sodium poly(styrene) sulfonate solutions (NaPSS) and hexadecylamine (HDA) solutions in various alkanols were investigated by surface tension measurements and ATR-IR spectroscopy. 3D printing experiments also assessed the robustness of the formed films. FINDINGS: Arrested fatty alcohol/water interfaces were formed due to the interfacial association of NaPSS, HDA, and alkanol molecules, which also act as cosurfactants in the surface region. These solid films enable the synthesis of temperature-sensitive all-in-liquid constructs and offer alternatives to bulk polyion/mixed surfactant assemblies prepared earlier through numerous synthesis steps.

16.
ACS Omega ; 8(25): 22556-22566, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396282

RESUMO

A new method for enzyme substrate assembly and its use in proteolytic enzyme assays with colorimetric and electrochemical detection is presented. The novelty of the method is the use of dual-function synthetic peptide containing both gold clustering and protease-sensitive moieties, which not only induces the simple formation of the peptide-decorated gold nanoparticle test substrates but also allows for the detection of proteolysis in the same batch. Protease-treated nanoparticles with a destabilized peptide shell became more prone to electroactivity, and thus, the model enzyme plasmin activity could be quantified with stripping square wave voltammetry analysis as well, giving an alternative method to conduct aggregation-based assays. Spectrophotometric and electrochemical calibration data proved to be linear within the 40-100 nM active enzyme concentration range, with possible extensions of the dynamic range by varying substrate concentration. The simple initial components and the ease of synthesis make the assay substrate preparation economic and easy to implement. The possibility of cross-check analytical results with two independent measurement techniques in the same batch greatly increases the applicability of the proposed system.

17.
Sci Rep ; 13(1): 18752, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907509

RESUMO

The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.


Assuntos
Escherichia coli , Vesículas Extracelulares , Animais , Camundongos , Escherichia coli/metabolismo , Membrana Externa Bacteriana/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Imagem Molecular
18.
Materials (Basel) ; 15(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408026

RESUMO

Surface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH2 sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs). The prepared pHOPs were thoroughly characterized by transmission electron microscopy, dynamic light scattering, FT-IR, UV-Vis and fluorescence spectroscopies, and microfluidic resistive pulse sensing. The optimal amino surface modification of pHOPs with APDEMS was at pH 10.2, at 60 °C temperature with 10 min reaction time. The positive Zeta potential of pHOP-NH2 in an acidic environment and the appearance of vibrations characteristic to the surface amino groups on the FT-IR spectra prove the successful surface modification. A red-shift in the absorbance spectrum and the appearance of bands characteristic to secondary amines in the FTIR spectrum of F-HOP confirmed the covalent attachment of FITC to pHOP-NH2. This study provides a step-by-step synthetic optimization and characterization of fluorescently labelled organosilica particles to enhance their optical properties and extend their applications.

19.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407290

RESUMO

Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles' morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.

20.
Forensic Sci Int ; 333: 111236, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228142

RESUMO

Turquoise covered mosaic objects - especially masks - were attractive components of treasures transported to Europe from Mexico after the fall of the Aztec Empire in the 1500s. According to our present knowledge, the mosaic masks were manufactured for ritual purpose. The main material of mosaics, the turquoise was a high-prestige semi-precious stone among Mexican native people. During the 20th century, such objects derived both from illegal treasure hunting and documented archaeological excavations. The aim of our research was the authentication of a turquoise covered Aztec wooden mask, which presumably originates from the Tehuacán Valley, Mexico and exchanged by the Museum of Ethnography, Budapest, in 1973. The detailed and complex analytical investigation of the mask is a curiosity. To reveal the origin of the object, UV photographs were taken, the wooden base was subjected to biological studies and C-14 dating, the organic glue fixing the tesserae and the inorganic mosaic tesserae were investigated by non-destructive chemical, FT-IR and Raman spectroscopic methods. Our investigations determined that the mask of the Museum of Ethnography was made of an alder species of tree and its age is AD 1492-1653. The light-coloured covering mosaic lamellae were identified as alabaster and claystone. Comparing the turquoise tesserae cover with reference materials, their chemical composition has been clearly differentiated from most of the well-known turquoise sources of the US Southwest. Based on our results, the Aztec mask of the Museum of Ethnography proved to be an original piece of art from the 15th-17th century.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA