Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Appl Clin Med Phys ; 18(6): 97-103, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28960753

RESUMO

PURPOSE: Advanced radiotherapy delivery systems designed for high-dose, high-precision treatments often come equipped with high-definition multi-leaf collimators (HD-MLC) aimed at more finely shaping radiation dose to the target. In this work, we study the effect of a high definition MLC on spine stereotactic body radiation therapy (SBRT) treatment plan quality and plan deliverability. METHODS AND MATERIALS: Seventeen spine SBRT cases were planned with VMAT using a standard definition MLC (M120), HD-MLC, and HD-MLC with an added objective to reduce monitor units (MU). M120 plans were converted into plans deliverable on an HD-MLC using in-house software. Plan quality and plan deliverability as measured by portal dosimetry were compared among the three types of plans. RESULTS: Only minor differences were noted in plan quality between the M120 and HD-MLC plans. Plans generated with the HD-MLC tended to have better spinal cord sparing (3% reduction in maximum cord dose). HD-MLC plans on average had 12% more MU and 55% greater modulation complexity as defined by an in-house metric. HD-MLC plans also had significantly degraded deliverability. Of the VMAT arcs measured, 94% had lower gamma passing metrics when using the HD-MLC. CONCLUSION: Modest improvements in plan quality were noted when switching from M120 to HD-MLC at the expense of significantly less accurate deliverability in some cases.


Assuntos
Algoritmos , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Coluna Vertebral/cirurgia , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Med Phys ; 51(8): 5604-5617, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38436493

RESUMO

BACKGROUND: With recent interest in patient-specific dosimetry for radiopharmaceutical therapy (RPT) and selective internal radiation therapy (SIRT), an increasing number of voxel-based algorithms are being evaluated. Monte Carlo (MC) radiation transport, generally considered to be the most accurate among different methods for voxel-level absorbed dose estimation, can be computationally inefficient for routine clinical use. PURPOSE: This work demonstrates a recently implemented grid-based linear Boltzmann transport equation (LBTE) solver for fast and accurate voxel-based dosimetry in RPT and SIRT and benchmarks it against MC. METHODS: A deterministic LBTE solver (Acuros MRT) was implemented within a commercial RPT dosimetry package (Velocity 4.1). The LBTE is directly discretized using an adaptive mesh refined grid and then the coupled photon-electron radiation transport is iteratively solved inside specified volumes to estimate radiation doses from both photons and charged particles in heterogeneous media. To evaluate the performance of the LBTE solver for RPT and SIRT applications, 177Lu SPECT/CT, 90Y PET/CT, and 131I SPECT/CT images of phantoms and patients were used. Multiple lesions (2-1052 mL) and normal organs were delineated for each study. Voxel dosimetry was performed with the LBTE solver, dose voxel kernel (DVK) convolution with density correction, and a validated in-house MC code using the same time-integrated activity and density maps as input to the different dose engines. The resulting dose maps, difference maps, and dose-volume-histogram (DVH) metrics were compared, to assess the voxel-level agreement. Evaluation of mean absorbed dose included comparison with structure-level estimates from OLINDA. RESULTS: In the phantom inserts/compartments, the LBTE solver versus MC and DVK convolution demonstrated good agreement with mean absorbed dose and DVH metrics agreeing to within 5% except for the D90 and D70 metrics of a very low activity concentration insert of 90Y where the agreement was within 15%. In the patient studies (five patients imaged after 177Lu DOTATATE RPT, five after 90Y SIRT, and two after 131I radioimmunotherapy), in general, there was better agreement between the LBTE solver and MC than between LBTE solver and DVK convolution for mean absorbed dose and voxel-level evaluations. Across all patients for all three radionuclides, for soft tissue structures (kidney, liver, lesions), the mean absorbed dose estimates from the LBTE solver were in good agreement with those from MC (median difference < 1%, maximum 9%) and those from DVK (median difference < 5%, maximum 9%). The LBTE and OLINDA estimates for mean absorbed dose in kidneys and liver agreed to within 10%, but differences for lesions were larger with a maximum 14% for 177Lu, 23% for 90Y, and 26% for 131I. For bone regions, the agreement in mean absorbed doses between LBTE and both MC and DVK were similar (median < 11%, max 11%) while for lung the agreement between LBTE and MC (median < 1%, max 8%) was substantially better than between LBTE and DVK (median < 16%, max 33%). Voxel level estimates for soft tissue structures also showed good agreement between the LBTE solver and both MC and DVK with a median difference < 5% (maximum < 13%) for the DVH metrics with all three radionuclides. The largest difference in DVH metrics was for the D90 and D70 metric in lung and bone where the uptake was low. Here, the difference between LBTE and MC had a median value < 14% (maximum 23%) for bone and < 4% (maximum 37%) for lung, while the corresponding differences between LBTE and DVK were < 23% (maximum 31%) and < 67% (maximum 313%), respectively. For a typical patient with a matrix size of 166 × 166 × 129 (voxel size 3 × 3 × 3 mm3), voxel dosimetry using the LBTE solver was as fast as ∼2 min on a desktop computer. CONCLUSION: Having established good agreement between the LBTE solver and MC for RPT and SIRT applications, the LBTE solver is a viable option for voxel dosimetry that can be faster than MC. Further analysis is being performed to encompass the broad range of radionuclides and conditions encountered clinically.


Assuntos
Método de Monte Carlo , Radiometria , Compostos Radiofarmacêuticos , Compostos Radiofarmacêuticos/uso terapêutico , Humanos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Algoritmos , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioisótopos de Ítrio/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
3.
Front Oncol ; 14: 1433480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39169947

RESUMO

Background: Radioembolization with yttrium-90 (Y-90) is utilized to treat primary liver malignancies. The efficacy of this intra-arterial therapy in arterially hypoperfused tumors is not known. Methods: We reviewed data of patients with primary liver tumors treated with Y-90 prescription doses of at least 150 Gy. Baseline patient characteristics, treatment history, imaging-based tumor response assessments, and clinical outcome metrics were recorded. Tumors were classified as arterially hyperperfused versus hypoperfused on post-TARE Y-90 SPECT/CTs or pre-TARE hepatic perfusion SPECT/CTs. Perfusion status was correlated with tumor response assessments and clinical outcomes. Cox proportional hazards models were utilized to compare survival and progression-free survival. Inverse probability weighting was utilized to account for clinical factors and adjusted multivariable proportional hazards analyses to examine the relationship of quantitative perfusion and cancer outcomes. Results: Of 400 Y-90 treatments, 88 patients received a prescribed dose of at least 150 Gy and had pre- or post-treatment SPECT/CT images. 11 and 77 patients had arterially hypoperfused and hyperperfused lesions, respectively. On dedicated liver MRI or CT at 3 months after Y-90, the complete response rates were 5.6% and 16.5% in the hypoperfused and hyperperfused cohort, respectively (P = 0.60). When controlling for various clinical features, including tumor histology, patients with arterially hypoperfused tumors had significantly shorter progression-free survival (HR 1.87, 95% CI - 1.03 - 3.37, P = 0.039) and greater elsewhere liver (HR 3.36, 95% CI = 1.23 - 9.20, P = 0.019) and distant failure (HR 7.64 (2.71 - 21.54, P < 0.001). In inverse probability weighted analysis, patients with arterially hypoperfused tumors had worse overall survival (P = 0.032). In the quantitative analysis, lower levels of lesion perfusion were also associated with worse clinical outcomes, again controlling for tumor histology. Conclusion: Compared to arterially hyperperfused tumors, hypoperfused primary liver tumors treated with Y-90 may have worse clinical outcomes.

4.
J Nucl Med ; 65(8): 1224-1230, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960710

RESUMO

Functional liver parenchyma can be damaged from treatment of liver malignancies with 90Y selective internal radiation therapy (SIRT). Evaluating functional parenchymal changes and developing an absorbed dose (AD)-toxicity model can assist the clinical management of patients receiving SIRT. We aimed to determine whether there is a correlation between 90Y PET AD voxel maps and spatial changes in the nontumoral liver (NTL) function derived from dynamic gadoxetic acid-enhanced MRI before and after SIRT. Methods: Dynamic gadoxetic acid-enhanced MRI scans were acquired before and after treatment for 11 patients undergoing 90Y SIRT. Gadoxetic acid uptake rate (k1) maps that directly quantify spatial liver parenchymal function were generated from MRI data. Voxel-based AD maps, derived from the 90Y PET/CT scans, were binned according to AD. Pre- and post-SIRT k1 maps were coregistered to the AD map. Absolute and percentage k1 loss in each bin was calculated as a measure of loss of liver function, and Spearman correlation coefficients between k1 loss and AD were evaluated for each patient. Average k1 loss over the patients was fit to a 3-parameter logistic function based on AD. Patients were further stratified into subgroups based on lesion type, baseline albumin-bilirubin scores and alanine transaminase levels, dose-volume effect, and number of SIRT treatments. Results: Significant positive correlations (ρ = 0.53-0.99, P < 0.001) between both absolute and percentage k1 loss and AD were observed in most patients (8/11). The average k1 loss over 9 patients also exhibited a significant strong correlation with AD (ρ ≥ 0.92, P < 0.001). The average percentage k1 loss of patients across AD bins was 28%, with a logistic function model demonstrating about a 25% k1 loss at about 100 Gy. Analysis between patient subgroups demonstrated that k1 loss was greater among patients with hepatocellular carcinoma, higher alanine transaminase levels, larger fractional volumes of NTL receiving an AD of 70 Gy or more, and sequential SIRT treatments. Conclusion: Novel application of multimodality imaging demonstrated a correlation between 90Y SIRT AD and spatial functional liver parenchymal degradation, indicating that a higher AD is associated with a larger loss of local hepatocyte function. With the developed response models, PET-derived AD maps can potentially be used prospectively to identify localized damage in liver and to enhance treatment strategies.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Ítrio , Humanos , Masculino , Feminino , Fígado/diagnóstico por imagem , Pessoa de Meia-Idade , Radioisótopos de Ítrio/uso terapêutico , Idoso , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagem , Gadolínio DTPA , Testes de Função Hepática , Dosagem Radioterapêutica
5.
J Nucl Med ; 64(5): 825-828, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36418169

RESUMO

Dosimetry-guided treatment planning in selective internal radiation therapy relies on accurate and reproducible measurement of administered activity. This 4-center, 5-PET-device study compared the manufacturer-declared 90Y activity in vials with quantitative 90Y PET/CT assessment of the same vials. We compared 90Y PET-measured activity (APET) for 56 90Y-labeled glass and 18 90Y-labeled resin microsphere vials with the calibrated activity specified by the manufacturer (AM). Additionally, the same analysis was performed for 4 90Y-chloride vials. The mean APET/AM ratio was 0.79 ± 0.04 (range, 0.71-0.89) for glass microspheres and 1.15 ± 0.06 (range, 1.05-1.25) for resin microspheres. The mean APET/AM ratio for 90Y-chloride vials was 1.00 ± 0.04 (range, 0.96-1.06). Thus, we found an average difference of 46% between glass and resin microsphere activity calibrations, whereas close agreement was found for chloride solutions. We expect that the reported discrepancies will promote further investigations to establish reliable and accurate patient dosimetry and dose-effect assessments.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microesferas , Cloretos , Radiometria , Radioisótopos de Ítrio , Vidro
6.
Med Phys ; 50(1): 540-556, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35983857

RESUMO

PURPOSE: Validation of dosimetry software, such as Monte Carlo (MC) radiation transport codes used for patient-specific absorbed dose estimation, is critical prior to their use in clinical decision making. However, direct experimental validation in the clinic is generally not performed for low/medium-energy beta emitters used in radiopharmaceutical therapy (RPT) due to the challenges of measuring energy deposited by short-range particles. Our objective was to design a practical phantom geometry for radiochromic film (RF)-based absorbed dose measurements of beta-emitting radionuclides and perform experiments to directly validate our in-house developed Dose Planning Method (DPM) MC code dedicated to internal dosimetry. METHODS: The experimental setup was designed for measuring absorbed dose from beta emitters that have a range sufficiently penetrating to ∼200 µm in water as well as to capture any photon contributions to absorbed dose. Assayed 177 Lu and 90 Y liquid sources, 13-450 MBq estimated to deliver 0.5-10 Gy to the sensitive layer of the RF, were injected into the cavity of two 3D-printed half-cylinders that had been sealed with 12.7 µm or 25.4 µm thick Kapton Tape. A 3.8 × 6 cm strip of GafChromic EBT3 RF was sandwiched between the two taped half-cylinders. After 2-48 h exposures, films were retrieved and wipe tested for contamination. Absorbed dose to the RF was measured using a commercial triple-channel dosimetry optimization method and a calibration generated via 6 MV photon beam. Profiles were analyzed across the central 1 cm2 area of the RF for validation. Eleven experiments were completed with 177 Lu and nine with 90 Y both in saline and a bone equivalent solution. Depth dose curves were generated for 177 Lu and 90 Y stacking multiple RF strips between a single filled half-cylinder and an acrylic backing. All experiments were modeled in DPM to generate voxelized MC absorbed dose estimates. We extended our study to benchmark general purpose MC codes MCNP6 and EGSnrc against the experimental results as well. RESULTS: A total of 20 experiments showed that both the 3D-printed phantoms and the final absorbed dose values were reproducible. The agreement between the absorbed dose estimates from the RF measurements and DPM was on average -4.0% (range -10.9% to 3.2%) for all single film 177 Lu experiments and was on average -1.0% (range -2.7% to 0.7%) for all single film 90 Y experiments. Absorbed depth dose estimates by DPM agreed with RF on average 1.2% (range -8.0% to 15.2%) across all depths for 177 Lu and on average 4.0% (range -5.0% to 9.3%) across all depths for 90 Y. DPM absorbed dose estimates agreed with estimates from EGSnrc and MCNP across the board, within 4.7% and within 3.4% for 177 Lu and 90 Y respectively, for all geometries and across all depths. MC showed that absorbed dose to RF from betas was greater than 92% of the total (betas + other radiations) for 177 Lu, indicating measurement of dominant beta contribution with our design. CONCLUSIONS: The reproducible results with a RF insert in a simple phantom designed for liquid sources demonstrate that this is a reliable setup for experimentally validating dosimetry algorithms used in therapies with beta-emitting unsealed sources. Absorbed doses estimated with the DPM MC code showed close agreement with RF measurement and with results from two general purpose MC codes, thereby validating the use of this algorithms for clinical RPT dosimetry.


Assuntos
Radiometria , Software , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Algoritmos , Imagens de Fantasmas , Método de Monte Carlo , Impressão Tridimensional , Dosimetria Fotográfica/métodos
7.
Phys Med Biol ; 68(6)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36780696

RESUMO

Objective.90Y selective internal radiation therapy (SIRT) treatment of hepatocellular carcinoma (HCC) can potentially underdose lesions, as identified on post-therapy PET/CT imaging. This study introduces a methodology and explores the feasibility for selectively treating SIRT-underdosed HCC lesions, or lesion subvolumes, with stereotactic body radiation therapy (SBRT) following post-SIRT dosimetry.Approach. We retrospectively analyzed post-treatment PET/CT images of 20 HCC patients after90Y SIRT. Predicted tumor response from SIRT was quantified based on personalized post-therapy dosimetry and corresponding response models. Predicted non-responding tumor regions were then targeted with a hypothetical SBRT boost plan using a framework for selecting eligible tumors and tumor subregions. SBRT boost plans were compared to SBRT plans targeting all tumors irrespective of SIRT dose with the same prescription and organ-at-risk (OAR) objectives. The potential benefit of SIRT followed by a SBRT was evaluated based on OAR dose and predicted toxicity compared to the independent SBRT treatment.Main results. Following SIRT, 14/20 patients had at least one predicted non-responding tumor considered eligible for a SBRT boost. When comparing SBRT plans, 10/14 (71%) SBRTboostand 12/20 (60%) SBRTaloneplans were within OAR dose constraints. For three patients, SBRTboostplans were within OAR constraints while SBRTaloneplans were not. Across the 14 eligible patients, SBRTboostplans had significantly less dose to the healthy liver (decrease in mean dose was on average ± standard deviation, 2.09 Gy ± 1.99 Gy, ) and reduced the overall targeted PTV volume (39% ± 21%) compared with SBRTalone.Significance. A clinical methodology for treating HCC using a synergized SIRT and SBRT approach is presented, demonstrating that it could reduce normal tissue toxicity risk in a majority of our retrospectively evaluated cases. Selectively targeting SIRT underdosed HCC lesions, or lesion subvolumes, with SBRT could improve tumor control and patient outcomes post-SIRT and allow SIRT to function as a target debulking tool for cases when SBRT is not independently feasible.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Radiocirurgia/métodos , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Viabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
8.
Med Phys ; 39(4): 2193-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482641

RESUMO

PURPOSE: The purpose of this study was to verify the dosimetric performance of Acuros XB (AXB), a grid-based Boltzmann solver, in intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). METHODS: The Radiological Physics Center (RPC) head and neck (H&N) phantom was used for all calculations and measurements in this study. Clinically equivalent IMRT and VMAT plans were created on the RPC H&N phantom in the Eclipse treatment planning system (version 10.0) by using RPC dose prescription specifications. The dose distributions were calculated with two different algorithms, AXB 11.0.03 and anisotropic analytical algorithm (AAA) 10.0.24. Two dose report modes of AXB were recorded: dose-to-medium in medium (D(m,m)) and dose-to-water in medium (D(w,m)). Each treatment plan was delivered to the RPC phantom three times for reproducibility by using a Varian Clinac iX linear accelerator. Absolute point dose and planar dose were measured with thermoluminescent dosimeters (TLDs) and GafChromic® EBT2 film, respectively. Profile comparison and 2D gamma analysis were used to quantify the agreement between the film measurements and the calculated dose distributions from both AXB and AAA. The computation times for AAA and AXB were also evaluated. RESULTS: Good agreement was observed between measured doses and those calculated with AAA or AXB. Both AAA and AXB calculated doses within 5% of TLD measurements in both the IMRT and VMAT plans. Results of AXB_D(m,m) (0.1% to 3.6%) were slightly better than AAA (0.2% to 4.6%) or AXB_D(w,m) (0.3% to 5.1%). The gamma analysis for both AAA and AXB met the RPC 7%/4 mm criteria (over 90% passed), whereas AXB_D(m,m) met 5%/3 mm criteria in most cases. AAA was 2 to 3 times faster than AXB for IMRT, whereas AXB was 4-6 times faster than AAA for VMAT. CONCLUSIONS: AXB was found to be satisfactorily accurate when compared to measurements in the RPC H&N phantom. Compared with AAA, AXB results were equal to or better than those obtained with film measurements for IMRT and VMAT plans. The AXB_D(m,m) reporting mode was found to be closer to TLD and film measurements than was the AXB_D(w,m) mode. AXB calculation time was found to be significantly shorter (× 4) than AAA for VMAT.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Biológicos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Simulação por Computador , Dosimetria Fotográfica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
9.
Med Phys ; 49(2): 1216-1230, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882821

RESUMO

PURPOSE: Current methods for patient-specific voxel-level dosimetry in radionuclide therapy suffer from a trade-off between accuracy and computational efficiency. Monte Carlo (MC) radiation transport algorithms are considered the gold standard for voxel-level dosimetry but can be computationally expensive, whereas faster dose voxel kernel (DVK) convolution can be suboptimal in the presence of tissue heterogeneities. Furthermore, the accuracies of both these methods are limited by the spatial resolution of the reconstructed emission image. To overcome these limitations, this paper considers a single deep convolutional neural network (CNN) with residual learning (named DblurDoseNet) that learns to produce dose-rate maps while compensating for the limited resolution of SPECT images. METHODS: We trained our CNN using MC-generated dose-rate maps that directly corresponded to the true activity maps in virtual patient phantoms. Residual learning was applied such that our CNN learned only the difference between the true dose-rate map and DVK dose-rate map with density scaling. Our CNN consists of a 3D depth feature extractor followed by a 2D U-Net, where the input was 11 slices (3.3 cm) of a given Lu-177 SPECT/CT image and density map, and the output was the dose-rate map corresponding to the center slice. The CNN was trained with nine virtual patient phantoms and tested on five different phantoms plus 42 SPECT/CT scans of patients who underwent Lu-177 DOTATATE therapy. RESULTS: When testing on virtual patient phantoms, the lesion/organ mean dose-rate error and the normalized root mean square error (NRMSE) relative to the ground truth of the CNN method was consistently lower than DVK and MC, when applied to SPECT images. Compared to DVK/MC, the average improvement for the CNN in mean dose-rate error was 55%/53% and 66%/56%; and in NRMSE was 18%/17% and 10%/11% for lesion and kidney regions, respectively. Line profiles and dose-volume histograms demonstrated compensation for SPECT resolution effects in the CNN-generated dose-rate maps. The ensemble noise standard deviation, determined from multiple Poisson realizations, was improved by 21%/27% compared to DVK/MC. In patients, potential improvements from CNN dose-rate maps compared to DVK/MC were illustrated qualitatively, due to the absence of ground truth. The trained residual CNN took about 30 s on a single GPU (Tesla V100) to generate a 512 × $\; \times \;$ 512 × $\; \times \;$ 130 dose-rate map for a patient. CONCLUSION: The proposed residual CNN, trained using phantoms generated from patient images, has potential for real-time patient-specific dosimetry in clinical treatment planning due to its demonstrated improvement in accuracy, resolution, noise, and speed over the DVK/MC approaches.


Assuntos
Radiometria , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Radioisótopos , Cintilografia
10.
J Nucl Med ; 63(11): 1665-1672, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35422445

RESUMO

Patient-specific dosimetry in radiopharmaceutical therapy (RPT) is impeded by the lack of tools that are accurate and practical for the clinic. Our aims were to construct and test an integrated voxel-level pipeline that automates key components (organ segmentation, registration, dose-rate estimation, and curve fitting) of the RPT dosimetry process and then to use it to report patient-specific dosimetry in 177Lu-DOTATATE therapy. Methods: An integrated workflow that automates the entire dosimetry process, except tumor segmentation, was constructed. First, convolutional neural networks (CNNs) are used to automatically segment organs on the CT portion of one post-therapy SPECT/CT scan. Second, local contour intensity-based SPECT--SPECT alignment results in volume-of-interest propagation to other time points. Third, dose rate is estimated by explicit Monte Carlo (MC) radiation transport using the fast, Dose Planning Method code. Fourth, the optimal function for dose-rate fitting is automatically selected for each voxel. When reporting mean dose, we apply partial-volume correction, and uncertainty is estimated by an empiric approach of perturbing segmentations. Results: The workflow was used with 4-time-point 177Lu SPECT/CT imaging data from 20 patients with 77 neuroendocrine tumors, segmented by a radiologist. CNN-defined kidneys resulted in high Dice values (0.91-0.94) and only small differences (2%-5%) in mean dose when compared with manual segmentation. Contour intensity-based registration led to visually enhanced alignment, and the voxel-level fitting had high R 2 values. Across patients, dosimetry results were highly variable; for example, the average of the mean absorbed dose (Gy/GBq) was 3.2 (range, 0.2-10.4) for lesions, 0.49 (range, 0.24-1.02) for left kidney, 0.54 (range, 0.31-1.07) for right kidney, and 0.51 (range, 0.27-1.04) for healthy liver. Patient results further demonstrated the high variability in the number of cycles needed to deliver hypothetical threshold absorbed doses of 23 Gy to kidney and 100 Gy to tumor. The uncertainty in mean dose, attributable to variability in segmentation, averaged 6% (range, 3%-17%) for organs and 10% (range, 3%-37%) for lesions. For a typical patient, the time for the entire process was about 25 min (∼2 min manual time) on a desktop computer, including time for CNN organ segmentation, coregistration, MC dosimetry, and voxel curve fitting. Conclusion: A pipeline integrating novel tools that are fast and automated provides the capacity for clinical translation of dosimetry-guided RPT.


Assuntos
Tumores Neuroendócrinos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Tumores Neuroendócrinos/tratamento farmacológico , Radioisótopos , Receptores de Peptídeos
11.
EJNMMI Phys ; 9(1): 90, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542239

RESUMO

PURPOSE: The aim was to quantify inter- and intra-observer variability in manually delineated hepatocellular carcinoma (HCC) lesion contours and the resulting impact on radioembolization (RE) dosimetry. METHODS: Ten patients with HCC lesions treated with Y-90 RE and imaged with post-therapy Y-90 PET/CT were selected for retrospective analysis. Three radiologists contoured 20 lesions manually on baseline multiphase contrast-enhanced MRIs, and two of the radiologists re-contoured at two additional sessions. Contours were transferred to co-registered PET/CT-based Y-90 dose maps. Volume-dependent recovery coefficients were applied for partial volume correction (PVC) when reporting mean absorbed dose. To understand how uncertainty varies with tumor size, we fit power models regressing relative uncertainty in volume and in mean absorbed dose on contour volume. Finally, we determined effects of segmentation uncertainty on tumor control probability (TCP), as calculated using logistic models developed in a previous RE study. RESULTS: The average lesion volume ranged from 1.8 to 194.5 mL, and the mean absorbed dose ranged from 23.4 to 1629.0 Gy. The mean inter-observer Dice coefficient for lesion contours was significantly less than the mean intra-observer Dice coefficient (0.79 vs. 0.85, p < 0.001). Uncertainty in segmented volume, as measured by the Coefficient of Variation (CV), ranged from 4.2 to 34.7% with an average of 17.2%. The CV in mean absorbed dose had an average value of 5.4% (range 1.2-13.1%) without PVC while it was 15.1% (range 1.5-55.2%) with PVC. Using the fitted models for uncertainty as a function of volume on our prior data, the mean change in TCP due to segmentation uncertainty alone was estimated as 16.2% (maximum 48.5%). CONCLUSIONS: Though we find relatively high inter- and intra-observer reliability overall, uncertainty in tumor contouring propagates into non-negligible uncertainty in dose metrics and outcome prediction for individual cases that should be considered in dosimetry-guided treatment.

12.
J Nucl Med ; 63(6): 882-889, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503962

RESUMO

Liver function may be negatively affected by radiation for treatment of hepatic malignancy. Pretreatment blood cytokine levels are biomarkers for prediction of toxicity and survival after external-beam radiation therapy. We hypothesized that cytokines may also predict outcomes after radioembolization, enabling a biomarker-driven personalized approach to treatment. Methods: Pretherapy blood samples from patients enrolled on a prospective protocol evaluating 90Y radioembolization for management of intrahepatic malignancy were analyzed for 2 cytokines selected on the basis of prior studies in stereotactic body radiotherapy, soluble tumor necrosis factor receptor 1 (sTNFR1) and hepatocyte growth factor (HGF), via enzyme-linked immunosorbent assay, and key dosimetric parameters were derived from posttreatment 90Y PET/CT imaging. Toxicity was defined as a change in albumin-bilirubin score from baseline to follow-up (3-6 mo after treatment). Associations of cytokine levels, dose metrics, and baseline liver function with toxicity and overall survival were assessed. Results: Data from 43 patients treated with 90Y radioembolization for primary (48.8% [21/43]) or secondary (51.2% [22/43]) malignancy were assessed. Examined dose metrics and baseline liver function were not associated with liver toxicity; however, levels of sTNFR1 (P = 0.045) and HGF (P = 0.005) were associated with liver toxicity in univariate models. Cytokines were the only predictors of toxicity in multivariable models including dose metrics and prior liver-directed therapy. sTNFR1 (hazard ratio, 12.3; 95% CI, 3.5-42.5, P < 0.001) and HGF (hazard ratio, 7.5; 95% CI, 2.4-23.1, P < 0.001) predicted overall survival, and findings were similar when models were controlled for absorbed dose and presence of metastatic disease. Conclusion: Pretreatment cytokine levels predict liver toxicity and overall survival. These pathways can be targeted with available drugs, an advantage over previously studied dose metrics and liver function tests. Interventions directed at the TNFα-axis should be considered in future studies for prevention of liver toxicity, and HGF should be explored further to determine whether its elevation drives toxicity or indicates ongoing liver regeneration after prior injury.


Assuntos
Carcinoma Hepatocelular , Doença Hepática Induzida por Substâncias e Drogas , Embolização Terapêutica , Neoplasias Hepáticas , Biomarcadores , Carcinoma Hepatocelular/patologia , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Fator de Crescimento de Hepatócito , Humanos , Neoplasias Hepáticas/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Radioisótopos de Ítrio/uso terapêutico
13.
Brachytherapy ; 21(5): 569-591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599080

RESUMO

PURPOSE: To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS: Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS: The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS: ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.


Assuntos
Braquiterapia , Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Braquiterapia/métodos , Carcinoma Hepatocelular/terapia , Embolização Terapêutica/métodos , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Microesferas , Estados Unidos , Radioisótopos de Ítrio/uso terapêutico
14.
Med Phys ; 38(5): 2651-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21776802

RESUMO

PURPOSE: The deterministic Acuros XB (AXB) algorithm was recently implemented in the Eclipse treatment planning system. The goal of this study was to compare AXB performance to Monte Carlo (MC) and two standard clinical convolution methods: the anisotropic analytical algorithm (AAA) and the collapsed-cone convolution (CCC) method. METHODS: Homogeneous water and multilayer slab virtual phantoms were used for this study. The multilayer slab phantom had three different materials, representing soft tissue, bone, and lung. Depth dose and lateral dose profiles from AXB v10 in Eclipse were compared to AAA v10 in Eclipse, CCC in Pinnacle3, and EGSnrc MC simulations for 6 and 18 MV photon beams with open fields for both phantoms. In order to further reveal the dosimetric differences between AXB and AAA or CCC, three-dimensional (3D) gamma index analyses were conducted in slab regions and subregions defined by AAPM Task Group 53. RESULTS: The AXB calculations were found to be closer to MC than both AAA and CCC for all the investigated plans, especially in bone and lung regions. The average differences of depth dose profiles between MC and AXB, AAA, or CCC was within 1.1, 4.4, and 2.2%, respectively, for all fields and energies. More specifically, those differences in bone region were up to 1.1, 6.4, and 1.6%; in lung region were up to 0.9, 11.6, and 4.5% for AXB, AAA, and CCC, respectively. AXB was also found to have better dose predictions than AAA and CCC at the tissue interfaces where backscatter occurs. 3D gamma index analyses (percent of dose voxels passing a 2%/2 mm criterion) showed that the dose differences between AAA and AXB are significant (under 60% passed) in the bone region for all field sizes of 6 MV and in the lung region for most of field sizes of both energies. The difference between AXB and CCC was generally small (over 90% passed) except in the lung region for 18 MV 10 x 10 cm2 fields (over 26% passed) and in the bone region for 5 x 5 and 10 x 10 cm2 fields (over 64% passed). With the criterion relaxed to 5%/2 mm, the pass rates were over 90% for both AAA and CCC relative to AXB for all energies and fields, with the exception of AAA 18 MV 2.5 x 2.5 cm2 field, which still did not pass. CONCLUSIONS: In heterogeneous media, AXB dose prediction ability appears to be comparable to MC and superior to current clinical convolution methods. The dose differences between AXB and AAA or CCC are mainly in the bone, lung, and interface regions. The spatial distributions of these differences depend on the field sizes and energies.


Assuntos
Modelos Biológicos , Método de Monte Carlo , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Software , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Estatísticos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
15.
EJNMMI Phys ; 8(1): 45, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114115

RESUMO

INTRODUCTION: Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. METHODS: Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80-150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. RESULTS: Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80-150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. CONCLUSION: Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods.

16.
Med Phys ; 37(9): 4733-43, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964191

RESUMO

PURPOSE: To evaluate the dose distributions of an 192Ir source (model VS2000) in homogeneous water geometry calculated using a deterministic grid-based Boltzmann transport equation solver (GBBS) in the commercial treatment planning system (TPS) (BRACHYVISION-ACUROS V8.8). METHODS: Using percent dose differences (%deltaD), the GBBS (BV-ACUROS) was compared to the (1) published TG-43 data, (2) MCNPX Monte Carlo (MC) simulations of the 192Ir source centered in a 15 cm radius water sphere, and (3) TG-43 output from the TPS using vendor supplied (BV-TG43-vendor) and user extended (BV-TG43-extended) 2D anisotropy functions F(r, theta). BV-ACUROS assumes 1 mm of NiTi cable, while the TPS TG-43 algorithm uses data based on a 15 cm cable. MC models of various cable lengths were simulated. RESULTS: The MC simulations resulted in > 20% dose deviations along the cable for 1, 2, and 3 mm cable lengths relative to 15 cm. BV-ACUROS comparisons with BV-TG43-vendor and BV-TG43-extended yielded magnitude of differences, consistent with those seen in MC simulations. However, differences > 20% extended further (theta < or = 10 degrees) when using the vendor supplied anisotropy function F(ven0(r, theta). These differences were also seen in comparisons of F(r, theta) derived from the TPS output. CONCLUSIONS: The results suggest that %deltaD near the cable region is larger than previously estimated. The spatial distribution of the dose deviation is highly dependent on the reference TG-43 data used to compare to GBBS. The differences observed, while important to realize, should not have an impact on clinical dosimetry in homogeneous water.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Modelos Teóricos , Humanos , Radiometria
17.
Semin Radiat Oncol ; 30(1): 68-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727302

RESUMO

Transarterial radioembolization (TARE) with Yttrium-90 (90Y) microspheres is a liver-directed therapy for primary and metastatic disease. This manuscript provides a review of the clinical literature on TARE indications and efficacy with overviews of patient-selection and toxicity. Current dosimetry models used in practice are safe, relatively simple, and easy for clinicians to use. Planning currently relies on the imperfect surrogate, 99mTc macroaggregated albumin. Post-therapy quantitative imaging (90Y SPECT/CT or 90Y PET/CT) of microspheres can be used to calculate the macroscopic in vivo absorbed dose distribution. Similar to the evolution of other brachytherapy dose calculations, TARE is moving toward more patient-specific dosimetry that includes calculating and reporting nonuniform dose distributions throughout tumors and normal uninvolved liver.


Assuntos
Carcinoma Hepatocelular/radioterapia , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Humanos , Microesferas , Modelos Biológicos , Radiometria , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Ítrio/efeitos adversos , Radioisótopos de Ítrio/uso terapêutico
18.
Brachytherapy ; 19(3): 355-361, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32249182

RESUMO

PURPOSE: To present on the commissioning of an automated brachytherapy plan checker (BPC) for the evaluation of high-dose-rate brachytherapy treatment plans in support of standardized workflows and patient safety. METHODS AND MATERIALS: A BPC was developed using an applications programming interface in a commercial treatment planning system based on different inputs (e.g., regulations, professional society recommendations, and user feedback) and leveraged our experience with an in-house developed external beam plan checker. The BPC was commissioned using a comprehensive suite of test plans with known errors and anonymized clinical plans. RESULTS: During commissioning, the BPC was successfully executed on a total of 87 test plans. Commissioning tests spanned a range of treatment sites and evaluated that pass and fail states were correct. Administration settings were changed in a nonclinical database to evaluate tests involving the source and afterloader. Clinical testing of the BPC was then performed in parallel with a manual review process before clinical implementation. CONCLUSIONS: To commission the BPC for clinical use, a comprehensive suite of test plans was developed and used to ensure the BPC correctly detected and reported errors. A summary of the test plans is presented to help guide users developing similar automated tools. The BPC represents a process-improvement initiative designed to reduce errors and improve safety for brachytherapy patients. By using a comprehensive test suite for commissioning, tests are available for periodic quality assurance and after software upgrades.


Assuntos
Braquiterapia , Planejamento da Radioterapia Assistida por Computador , Software/normas , Humanos , Dosagem Radioterapêutica
19.
J Nucl Med ; 61(1): 104-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147404

RESUMO

The aim of this work was to develop models for tumor control probability (TCP) in radioembolization with 90Y PET/CT-derived radiobiologic dose metrics. Methods: Patients with primary liver cancer or liver metastases who underwent radioembolization with glass microspheres were imaged with 90Y PET/CT for voxel-level dosimetry to determine lesion absorbed dose (AD) metrics, biological effective dose (BED) metrics, equivalent uniform dose, and equivalent uniform BED for 28 treatments (89 lesions). The lesion dose-shrinkage correlation was assessed on the basis of RECIST and, when available, modified RECIST (mRECIST) at first follow-up. For a subset with mRECIST, logit regression TCP models were fit via maximum likelihood to relate lesion-level binary response to the dose metrics. As an exploratory analysis, the nontumoral liver dose-toxicity relationship was also evaluated. Results: Lesion dose-shrinkage analysis showed that there were no significant differences between model parameters for primary and metastatic subgroups and that correlation coefficients were superior with mRECIST. Therefore, subsequent TCP analysis was performed for the combined group using mRECIST only. The overall lesion-level mRECIST response rate was 57%. The AD and BED metrics yielding 50% TCP were 292 and 441 Gy, respectively. All dose metrics considered for TCP modeling, including mean AD, were significantly associated with the probability of response, with high areas under the curve (0.87-0.90, P < 0.0001) and high sensitivity (>0.75) and specificity (>0.83) calculated using a threshold corresponding to 50% TCP. Because nonuniform AD deposition by microspheres cannot be determined by PET at a microscopic scale, radiosensitivity values extracted here by fitting models to clinical response data were substantially lower than reported for in vitro cell cultures or for external-beam radiotherapy clinical studies. There was no correlation between nontumoral liver AD and toxicity measures. Conclusion: Despite the heterogeneous patient cohort, logistic regression TCP models showed a strong association between various dose metrics and the probability of response. The performance of mean AD was comparable to that of radiobiologic dose metrics that involve more complex calculations. These results demonstrate the importance of considering TCP in treatment planning for radioembolization.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Fígado/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Área Sob a Curva , Braquiterapia , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Modelos Logísticos , Microesferas , Método de Monte Carlo , Metástase Neoplásica , Distribuição Normal , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Análise de Regressão , Radioisótopos de Ítrio/química
20.
Med Phys ; 46(1): 229-237, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375655

RESUMO

PURPOSE: 90 Y-microsphere radioembolization or selective internal radiation therapy is increasingly being used as a treatment option for tumors that are not candidates for surgery and external beam radiation therapy. Recently, volumetric 90 Y-dosimetry techniques have been implemented to explore tumor dose-response on the basis of 3D 90 Y-activity distribution from PET imaging. Despite being a theranostic study, the optimization of quantitative 90 Y-PET image reconstruction still uses the mean activity concentration recovery coefficient (RC) as the objective function, which is more relevant to diagnostic and detection tasks than is to dosimetry. The aim of this study was to optimize 90 Y-PET image reconstruction by minimizing errors in volumetric dosimetry via the dose volume histogram (DVH). We propose a joint optimization of the number of equivalent iterations (the product of the iterations and subsets) and the postreconstruction filtration (FWHM) to improve the accuracy of voxel-level 90 Y dosimetry. METHODS: A modified NEMA IEC phantom was used to emulate clinically relevant 90 Y-PET imaging conditions through various combinations of acquisition durations, activity concentrations, sphere-to-background ratios, and sphere diameters. PET data were acquired in list mode for 300 min in a single-bed position; we then rebinned the list mode PET data to 60, 45, 30, 15, and 5 min per bed, with 10 different realizations. Errors in the DVH were calculated as root mean square errors (RMSE) of the differences in the image-based DVH and the expected DVH. The new optimization approach was tested in a phantom study, and the results were compared with the more commonly used objective function of the mean activity concentration RC. RESULTS: In a wide range of clinically relevant imaging conditions, using 36 equivalent iterations with a 5.2-mm filtration resulted in decreased systematic errors in volumetric 90 Y dosimetry, quantified as image-based DVH, in 90 Y-PET images reconstructed using the ordered subset expectation maximization (OSEM) iterative reconstruction algorithm with time of flight (TOF) and point spread function (PSF) modeling. Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of 90 Y-PET iterations and filtration for volumetric quantification of the 90 Y dose, was shown to be superior to conventional RC-based optimization approaches for image-based absorbed dose quantification. CONCLUSION: Our proposed objective function of minimizing errors in DVH, which allows for joint optimization of iterations and filtration to reduce errors in the PET-based volumetric quantification 90 Y dose, is relevant to dosimetry in therapy procedures. The proposed optimization method using DVH as the objective function could be applied to any imaging modality used to assess voxel-level quantitative information.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Doses de Radiação , Radioisótopos de Ítrio , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA