RESUMO
OBJECTIVES: The use of Deep Brain Stimulation (DBS) in treatment of various brain disorders is constantly growing; however, the number of studies of the reaction of the brain tissue toward implanted leads is still limited. Therefore, the aim of our study was to analyze the impact of DBS leads on brain tissue in a large animal model using minipigs. METHODS: Twelve female animals, one control and eleven with bilaterally implanted DBS electrodes were used in our experiment. 3, 6, and 12 months after implantation the animals were sacrificed, perfused and the brains were removed. Tissue blocks containing the lead tracks were dissected, frozen, sectioned into 40 µm sections and stained using Nissl and Eosin, anti-GFAPab or Isolectin. The tissue reaction was analyzed at five levels, following from the distal lead tip, to compare tissue response in stimulated and nonstimulated areas: four segments along each level of electrodes, and the fifth level lying outside the electrode area (control area). The sections were described both qualitatively and quantitatively. Quantitative assessment of the reaction to the implanted electrode was based on the measurement of the area covered by the staining and the thickness of the glial scar. RESULTS AND CONCLUSIONS: Tissue reaction was, on average, limited to distance of 500 µm from the lead track. The tissue response after 12 months was weaker than after 6 months confirming that it stabilizes over a time. There was no histological evidence that the stimulated part of the electrode triggered different tissue response than its nonstimulated part.
Assuntos
Encéfalo/patologia , Encéfalo/cirurgia , Estimulação Encefálica Profunda/tendências , Eletrodos Implantados/tendências , Animais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados/efeitos adversos , Feminino , Estudos Longitudinais , Suínos , Porco MiniaturaRESUMO
BACKGROUND: Modulation of pathological neural circuit activity in the brain with a minimum of complications is an area of intense interest. OBJECTIVE: The goal of the study was to alter neurons' physiological states without apparent damage of cellular integrity using stereotactic radiosurgery (SRS). METHODS: We treated a 7.5 mm-diameter target on the visual cortex of Göttingen minipigs with doses of 40, 60, 80, and 100 Gy. Six months post-irradiation, the pigs were implanted with a 9 mm-wide, eight-shank multi-electrode probe, which spanned the radiation focus as well as the low-exposure neighboring areas. RESULTS: Doses of 40 Gy led to an increase of spontaneous firing rate, six months post-irradiation, while doses of 60 Gy and greater were associated with a decrease. Subjecting the animals to visual stimuli resulted in typical visual evoked potentials (VEP). At 40 Gy, a significant reduction of the P1 peak time, indicative of higher network excitability was observed. At 80 Gy, P1 peak time was not affected, while a minor reduction at 60 Gy was seen. No distance-dependent effects on spontaneous firing rate, or on VEP were observed. Post-mortem histology revealed no evidence of necrosis at doses below 60 Gy. In an in vitro assay comprising of iPS-derived human neuron-astrocyte co-cultures, we found a higher vulnerability of inhibitory neurons than excitatory neurons with respect to radiation, which might provide the cellular mechanism of the disinhibitory effect observed in vivo. CONCLUSION: We provide initial evidence for a rather circuit-wide, long-lasting disinhibitory effect of low sub-ablative doses of SRS.
Assuntos
Potenciais Evocados Visuais , Radiocirurgia , Animais , Encéfalo , Radiação Ionizante , Radiocirurgia/métodos , Suínos , Porco MiniaturaRESUMO
Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[11C]dihydrotetrabenazine ([11C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100⯵g lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD.