RESUMO
The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.
Assuntos
Proteínas de Bactérias , Fatores de Virulência , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Oligonucleotídeos , Fosfatase Alcalina , Expressão GênicaRESUMO
Chlamydomonas reinhardtii (WT 2137) P. A. Dang. (Volvocales, Chlorophyceae) is a green microalgae serving as a suitable model in scientific research and a promising industrial biotechnology platform for production of biofuel, hydrogen and recombinant proteins. Fullerenes (C60) are allotropic carbon nanoparticles discovered in 1985 and used in biomedical studies since the early 1990s, when water solubilization methodologies were developed. Recently, surface-modified hydroxylated derivatives of fullerenes were proven to enhance algal growth and drought tolerance in plants. Here, a novel type of water-soluble [60]fullerene derivative with 12 glycine residues (GF) has been synthesized and tested for acute toxicity (up to 50 µg/ml) and as a potential biostimulant of algal growth. The effects of GF on pigment composition and growth rate of Chlamydomonas reinhardtii were systematically investigated. Our results suggest that GF was not toxic, and no negative change in the pigment content and no stress symptoms were observed. No changes in the photosynthetic parameters based on the fluorescence of chlorophyll a in Photosystem II (NPQ, Fv/Fm, Fv/F0, PI and RC/ABS) were observed. The GF had no effect on cell size and growth rate. At a concentration of 20 µg/ml, GF stimulated chlorophyll accumulation in 3-day-old cultures.