RESUMO
The combination antimalarial therapy of artemisinin-naphthoquine (ART-NQ) was developed as a single-dose therapy, aiming to improve adherence relative to the multiday schedules of other artemisinin combination therapies. The pharmacokinetics of ART-NQ has not been well characterized, especially in children. A pharmacokinetic study was conducted in adults and children over 5 years of age (6 to 10, 11 to 17, and ≥18 years of age) with uncomplicated malaria in Tanzania. The median weights for the three age groups were 20, 37.5, and 55 kg, respectively. Twenty-nine patients received single doses of 20 mg/kg of body weight for artemisinin and 8 mg/kg for naphthoquine, and plasma drug concentrations were assessed at 13 time points over 42 days from treatment. We used nonlinear mixed-effects modeling to interpret the data, and allometric scaling was employed to adjust for the effect of body size. The pharmacokinetics of artemisinin was best described by one-compartment model and that of naphthoquine by a two-compartment disposition model. Clearance values for a typical patient (55-kg body weight and 44.3-kg fat-free mass) were estimated as 66.7 L/h (95% confidence interval [CI], 57.3 to 78.5 L/h) for artemisinin and 44.2 L/h (95% CI, 37.9 to 50.6 L/h) for naphthoquine. Nevertheless, we show via simulation that patients weighing ≥70 kg achieve on average a 30% lower day 7 concentration compared to a 48-kg reference patient at the doses tested, suggesting dose increases may be warranted to ensure adequate exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01930331.).
Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Naftoquinonas , 1-Naftilamina/análogos & derivados , Adolescente , Adulto , Aminoquinolinas , Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Peso Corporal , Criança , Humanos , Malária Falciparum/tratamento farmacológico , Naftoquinonas/uso terapêutico , TanzâniaRESUMO
BACKGROUND: Diverse vaccination outcomes and protection levels among different populations pose a serious challenge to the development of an effective malaria vaccine. Co-infections are among many factors associated with immune dysfunction and sub-optimal vaccination outcomes. Chronic, asymptomatic viral infections can contribute to the modulation of vaccine efficacy through various mechanisms. Human Pegivirus-1 (HPgV-1) persists in immune cells thereby potentially modulating immune responses. We investigated whether Pegivirus infection influences vaccine-induced responses and protection in African volunteers undergoing whole P. falciparum sporozoites-based malaria vaccination and controlled human malaria infections (CHMI). METHODS: HPgV-1 prevalence was quantified by RT-qPCR in plasma samples of 96 individuals before, post vaccination with PfSPZ Vaccine and after CHMI in cohorts from Tanzania and Equatorial Guinea. The impact of HPgV-1 infection was evaluated on (1) systemic cytokine and chemokine levels measured by Luminex, (2) PfCSP-specific antibody titers quantified by ELISA, (3) asexual blood-stage parasitemia pre-patent periods and parasite multiplication rates, (4) HPgV-1 RNA levels upon asexual blood-stage parasitemia induced by CHMI. RESULTS: The prevalence of HPgV-1 was 29.2% (28/96) and sequence analysis of the 5' UTR and E2 regions revealed the predominance of genotypes 1, 2 and 5. HPgV-1 infection was associated with elevated systemic levels of IL-2 and IL-17A. Comparable vaccine-induced anti-PfCSP antibody titers, asexual blood-stage multiplication rates and pre-patent periods were observed in HPgV-1 positive and negative individuals. However, a tendency for higher protection levels was detected in the HPgV-1 positive group (62.5%) compared to the negative one (51.6%) following CHMI. HPgV-1 viremia levels were not significantly altered after CHMI. CONCLUSIONS: HPgV-1 infection did not alter PfSPZ Vaccine elicited levels of PfCSP-specific antibody responses and parasite multiplication rates. Ongoing HPgV-1 infection appears to improve to some degree protection against CHMI in PfSPZ-vaccinated individuals. This is likely through modulation of immune system activation and systemic cytokines as higher levels of IL-2 and IL17A were observed in HPgV-1 infected individuals. CHMI is safe and well tolerated in HPgV-1 infected individuals. Identification of cell types and mechanisms of both silent and productive infection in individuals will help to unravel the biology of this widely present but largely under-researched virus.
Assuntos
Coinfecção/imunologia , Infecções por Flaviviridae/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Esporozoítos/imunologia , Adolescente , Adulto , Estudos de Coortes , Coinfecção/complicações , Coinfecção/parasitologia , Coinfecção/virologia , Feminino , Infecções por Flaviviridae/sangue , Infecções por Flaviviridae/complicações , Infecções por Flaviviridae/epidemiologia , Guiné , Humanos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Pegivirus/genética , Pegivirus/imunologia , Plasmodium falciparum/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia , Vacinação , Potência de Vacina , Adulto JovemRESUMO
BACKGROUND: A vaccine would be an ideal tool for reducing malaria's impact. PfSPZ Vaccine (radiation attenuated, aseptic, purified, cryopreserved Plasmodium falciparum [Pf] sporozoites [SPZ]) has been well tolerated and safe in >1526 malaria-naive and experienced 6-month to 65-year-olds in the United States, Europe, and Africa. When vaccine efficacy (VE) of 5 doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine was assessed in adults against controlled human malaria infection (CHMI) in the United States and Tanzania and intense field transmission of heterogeneous Pf in Mali, Tanzanians had the lowest VE (20%). METHODS: To increase VE in Tanzania, we increased PfSPZ/dose (9 × 105 or 1.8 × 106) and decreased numbers of doses to 3 at 8-week intervals in a double blind, placebo-controlled trial. RESULTS: All 22 CHMIs in controls resulted in parasitemia by quantitative polymerase chain reaction. For the 9 × 105 PfSPZ group, VE was 100% (5/5) at 3 or 11 weeks (P < .000l, Barnard test, 2-tailed). For 1.8 × 106 PfSPZ, VE was 33% (2/6) at 7.5 weeks (P = .028). VE of dosage groups (100% vs 33%) was significantly different (P = .022). Volunteers underwent repeat CHMI at 37-40 weeks after last dose. 6/6 and 5/6 volunteers developed parasitemia, but time to first parasitemia was significantly longer than controls in the 9 × 105 PfSPZ group (10.89 vs 7.80 days) (P = .039), indicating a significant reduction in parasites in the liver. Antibody and T-cell responses were higher in the 1.8 × 106 PfSPZ group. CONCLUSIONS: In Tanzania, increasing the dose from 2.7 × 105 to 9 × 105 PfSPZ increased VE from 20% to 100%, but increasing to 1.8 × 106 PfSPZ significantly reduced VE. CLINICAL TRIALS REGISTRATION: NCT02613520.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Animais , Europa (Continente) , Humanos , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum , Esporozoítos , TanzâniaRESUMO
BACKGROUND: PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS: On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS: Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION: Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING: This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Assuntos
Anticorpos Antiprotozoários , Imunidade Humoral , Imunoglobulina G , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/imunologia , Tanzânia/epidemiologia , Adulto , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Masculino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Imunoglobulina M/imunologia , Infecções por HIV/imunologia , Esporozoítos/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: The success of any randomized clinical trial relies on the willingness of people to be recruited in the trial. However, 90% of all clinical trials worldwide have been reported to have failed to recruit the required number of trial participants within the scheduled time. This study aimed to qualitatively explore the motivations and barriers for healthy participants to participate in herbal remedy clinical trials in Tanzania. MATERIALS AND METHODS: This study used a qualitative descriptive research design based on the theory of planned behaviour. A total of five Focus Group Discussions (FGD) were conducted at Bagamoyo Clinical Trial Facility from 29 to 30 May 2021. Each group consisted of 5 to 10 participants. The participants of the study were 30 healthy males aged 18 to 45 male who participated in the clinical trial that evaluated the safety, tolerability, and efficacy of Maytenus Senegalensis. The focus group discussions were recorded audio-recorded. Verbatim transcription and thematic analysis were performed on the data. RESULTS: The prominent motivations mentioned were the opportunity for self-development, altruism, flexible study visit schedule, and financial compensation. Furthermore, the Participants' mothers and friends were reported as those most likely to approve of participation in an herbal remedy. The most mentioned barriers were inconvenience related to time commitment requirements, possible side effects, inflexible study visit schedule, and having other commitments. Moreover, the participants' father was reported to be more likely to disapprove of participation in a clinical trial of herbal remedy clinical trial. CONCLUSIONS: The results of this study showed that the motivations and barriers of healthy participants to participate in clinical trials of herbal remedies are varied and that participants are motivated by more than financial gains. The identified motivations and barriers can be used as a guideline to improve the design of recruitment and retention strategies for herbal remedy clinical trials.
Assuntos
Motivação , Grupos Focais , Voluntários Saudáveis , Humanos , Masculino , Pesquisa Qualitativa , TanzâniaRESUMO
In 2016, there were more cases and deaths caused by malaria globally than in 2015. An effective vaccine would be an ideal additional tool for reducing malaria's impact. Sanaria® PfSPZ Vaccine, composed of radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (SPZ) has been well tolerated and safe in malaria-naïve and experienced adults in the United States and Mali and protective against controlled human malaria infection with Pf in the United States and field transmission of Pf in Mali, but had not been assessed in younger age groups. We, therefore, evaluated PfSPZ Vaccine in 93 Tanzanians aged 45 years to 6 months in a randomized, double-blind, normal saline placebo-controlled trial. There were no significant differences in adverse events between vaccinees and controls or between dosage regimens. Because all age groups received three doses of 9.0 × 105 PfSPZ of PfSPZ Vaccine, immune responses were compared at this dosage. Median antibody responses against Pf circumsporozoite protein and PfSPZ were highest in infants and lowest in adults. T-cell responses were highest in 6-10-year olds after one dose and 1-5-year olds after three doses; infants had no significant positive T-cell responses. The safety data were used to support initiation of trials in > 300 infants in Kenya and Equatorial Guinea. Because PfSPZ Vaccine-induced protection is thought to be mediated by T cells, the T-cell data suggest PfSPZ Vaccine may be more protective in children than in adults, whereas infants may not be immunologically mature enough to respond to the PfSPZ Vaccine immunization regimen assessed.
Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T/fisiologia , Adolescente , Adulto , Formação de Anticorpos , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Vacinas Antimaláricas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Tanzânia , Vacinas AtenuadasRESUMO
We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 × 105 PfSPZ of PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than in malaria-naïve Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after CHMI. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (P = 0.015 by time to event, P = 0.543 by proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (P = 0.005 by proportional, P = 0.004 by time to event analysis). Plasmodium falciparum SPZ Vaccine was safe, well tolerated, and induced durable VE in four subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa.